

комплекс поверочный ипк-з Методика поверки ЦАКТ.466219.007 Д1

Изготовитель: ОАО "Электромеханика" 440052, г. Пенза, ул. Гоголя, 51/53

Содержание

1	Общие сведения		
2	Me	тодика поверки	4
	2.1	Операции поверки	4
	2.2	Проведение поверки	6
3	В Оформление результатов поверки 25		
П	Приложение A (справочное) Перечень сокращений 2		

1 Общие сведения

1.1 Настоящая методика поверки устанавливает методы и средства поверки комплекса поверочного ИПК-3 ЦАКТ.466219.007 (далее – ИПК-3) и его модификаций, предназначенных для поверки средств измерений следующих типов: БУ-3В, БУ-3П, БИ-4МЗ, датчиков СТЭК-1, Л178.

Перечень сокращений, принятых в настоящей методике поверки, приведен в приложении А.

1.2 Первичная поверка проводится при вводе в эксплуатацию и после его ремонта, периодическая - в процессе эксплуатации ИПК-3, но не реже одного раза в год.

2 Методика поверки

2.1 Операции поверки

2.1.1 Методика поверки устанавливает методы и средства первичной и периодической поверки ИПК-3.

2.1.2 ИПК-3 после ремонта подлежит первичной поверке.

2.1.3 Периодическую поверку ИПК-3 проводить не реже одного раза в год.

2.1.4 Операции поверки приведены в таблице 1.

Таблица 1

Наименование операции	Номер пункта	Наименование средств поверки	Приме- чание
1 Внешний осмотр	2.2.1		
 Проверка электрической прочности изоляции цепей питания 	2.2.2	Универсальная пробойная установка УПУ-10М; секундомер механический СОСпр-2б-2	Только при первичной поверке
3 Проверка сопротивления защитного заземления	2.2.3	Вольтметр универсальный Щ31; амперметр Э59	Только при первичной поверке
 Проверка электрического сопротивления изоляции 	2.2.4	Мегаомметр Ф4102/1-1М	
5 Опробование	2.2.5		

Продолжение таблицы 1

Наименование операции	Номер пункта	Наименование средств поверки	Приме- чание
6 Проверка диапазона и абсолютной погрешности задания частоты электрических импульсов	2.2.6	Осциллограф С1-55; частотомер электронно- счетный Ч3-64/1; источник питания Б5-8	
7 Проверка диапазона абсо- лютной погрешности задания скорости изменения частоты электрических импульсов	2.2.7	Генератор Г5-82; частотомер электронно- счетный Ч3-64/1; источник питания Б5-8	
8 Проверка диапазона и абсолютной погрешности имитации пройденного пути путем формирования заданного числа электрических импульсов	2.2.8	Частотомер электронно- счетный Ч3-64/1; источник питания Б5-8	
9 Проверка рабочего напряжения и максимального тока выходных каскадов частотных каналов	2.2.9	Осциллограф С1-55; источник питания Б5-8	
10 Проверка приема двоичных сигналов	2.2.10		
11 Проверка формирования частотных сигналов	2.2.11	Осциллограф С1-55; частотомер электрон- но-счетный Ч3-64/1; источник питания Б5-8; вольтметр универсальный В7-54/3	
12 Проверка абсолютной погрешности формирования токовых сигналов	2.2.12	Вольтметр универсальный Щ31; источник питания Б5-8; магазин сопротивлений Р327	
13 Проверка формирования двоичных сигналов	2.2.13	Вольтметр универсальный Щ31	
14 Проверка абсолютной погрешности формирования временного интервала	2.2.14	Частотомер электрон- но-счетный Ч3-64/1	
15 Проверка диапазона и абсолютной погрешности при задании скорости изменения сигнала постоянного тока	2.2.15	Генератор Г5-82; вольтметр универсаль- ный Щ31	

Продолжение таблицы 1

Наименование операции	Номер пункта	Наименование средств поверки	Приме- чание	
16 Проверка абсолютной погрешности измерения тока	2.2.16	Калибратор программи- руемый П320		
17 Проверка защиты программного обеспечения	2.2.17			
 Примечание - Допускается использовать другие средства поверки обеспечивающие выполнение перечисленных ниже функций. 				

2.1.5 Условия поверки и подготовка к ней.

При проведении поверки должны соблюдаться следующие условия:

• ИПК-3 должен быть установлен в рабочем положении;

• ИПК-3 должен быть предварительно выдержан при температуре окружающего воздуха (20 ± 5) °С не менее 2 часов;

• относительная влажность окружающего воздуха от 30 до 80 %;

• атмосферное давление от 84 до 106 кПа (от 630 до 795 мм рт.ст.);

- напряжение питания от 187 до 242 В;
- частота напряжения питания (50 ± 1) Гц;

• выдержка ИПК-3 перед началом поверки после включения питания должна быть не менее 15 минут;

• электромагнитные поля и радиопомехи должны отсутствовать.

2.2 Проведение поверки¹

2.2.1 При проведении внешнего осмотра должно быть установлено соответствие ИПК-3 следующим требованиям:

• поверяемый ИПК-3 не должен иметь повреждений, препятствующих его применению;

• маркировка ИПК-3 должна соответствовать данным, указанным в ЦАКТ.466219.007 РЭ;

• при первичной поверке ИПК-3 должен иметь формуляр. Должно быть установлено соответствие заводского номера в формуляре и на ИПК-3.

2.2.2 Проверку электрической прочности изоляции цепей питания производить в точках, указанных в таблице 2, с помощью пробойной установки согласно ГОСТ 22261-94. Установку напряжения производить плавно от 0 В до максимального значения

в течение 10 с. Затем выдержать при полном напряжении в течение 1 минуты, после чего так же плавно уменьшить напряжение.

Таблица 2

Функциональное назначение точек д мегаомметра и устройства для	Испытательное напряжение,	
1 точка	В	
Соединенные между собой сетевые контакты вилки питающего кабеля 1 (ЦАКТ.466219.007 Э4)	Корпус или заземляющий контакт кабеля 1	500

ИПК-3 считается выдержавшим проверку, если при воздействии в течение 1 минуты испытательного напряжения 500 В действующего значения синусоидального тока частотой 50 Гц не наблюдается пробоя изоляции.

2.2.3 Проверку сопротивления защитного заземления ИПК-3 проводить косвенным способом между заземляющей шпилькой ^ и одним из болтов с задней стороны лицевой панели в соответствии с рисунком 1 согласно ГОСТ Р МЭК 60950-2002.

Примечание - Допускается измерение сопротивления с помощью миллиомметра.

А - амперметр Э59;

V - вольтметр универсальный Щ31;

R1 - резистор C5-36 B-10 Вт-5,1 Ом ОЖ0.467.541 ТУ

Рисунок 1

ИПК-3 считается выдержавшим проверку, если измеренное сопротивление не превышает 0,1 Ом.

2.2.4 Проверку электрического сопротивления изоляции проводить с помощью мегаомметра напряжением 500 В постоянного тока в точках, указанных в таблице 2.

ИПК-3 считается годным, если значение измеренного сопротивления изоляции не менее 40 МОм.

2.2.5 Опробование проводить в следующей последовательности: а) включить питание ПЭВМ¹.

После загрузки операционной системы Windows включить питание ФПС-3 переводом клавиши "~220 В" на ФПС-3 в положение ВКЛ, а через 10-15 с - клавиши "ВЫХ.50 В" на ФПС-3 в положение ВКЛ;

б) после тридцатисекундного ожидания загрузить программу "Мастер сценариев". В окне программы "Мастер сценариев" во вкладке "Сценарии" выбрать **TestSrs2**. ИПК-3 считается работоспособным, если программа "TestSrs2" загрузилась без сообщений об ошибках²;

в) провести опробование ИПК-3 в основных режимах работы.

Допускается проводить опробование ИПК-3 в основных режимах работы совместно с определением его метрологических характеристик.

2.2.6 Определение диапазона задания частоты и абсолютной погрешности при задании частоты электрических импульсов производить в следующей последовательности:

а) собрать схему в соответствии с рисунком 2;

8

¹ После выключения ПЭВМ и ФПС-3 при необходимости проведения дальнейших проверок выполнять действия 2.2.5, перечисления a), б).

² Здесь и далее по тексту – при появлении сообщения "Ошибка соединения с драйвером" нажать кнопку **ОК**. В появившемся окне программы "TestSrs2" нажать кнопку **ВЫХОД** и вновь загрузить программу "TestSrs2", выбрав **TestSrs2** в окне программы "Мастер сценариев" во вкладке "**Сценарии**". При повторном появлении сообщений об ошибке в появившемся окне программы "TestSrs2" нажать кнопку **ВЫХОД**, выключить и включить питание ФПС-3. Выполнить действия 2.2.5, перечисление б).

R1, R2 – резистор C2-33H-2-2,2 кОм \pm 5 % -А ОЖ0.467.173 ТУ; XS1 – розетка ОНЦ-БС-1-10/14-Р12-3-В бР0.364.030 ТУ. Цепи вести проводом сечением не менее 0,35 мм².

Рисунок 2

б) в окне программы "TestSrs2" выбрать режим ПРОВЕРКА ФЧС;

 в) задавать последовательно значения имитируемой скорости и бандажа в соответствии с таблицей 3 для каждого синтезатора скорости;

Таблица 3

Имити скорос	оуемая ть, км/ч	Расчетная	і частота, Гц	Пределы абсолютной погрешности, Гц		
Бандаж 1350 мм	Бандаж 600 мм	Бандаж Бандаж 1350 мм 600 мм		Бандаж 1350 мм	Бандаж 600 мм	
1	1	2,751	6,189	± 0,005	± 0,012	
20	20	55,016	123,787	± 0,110	± 0,248	
50	50	137,541	309,468	± 0,275	± 0,619	
100	100	275,082	618,936	± 0,550	± 1,238	
150	150	412,624	928,403	± 0,825	± 1,857	
200	200	550,165	1237,872	± 1,100	± 2,476	
332	332	913,274	2054,867	± 1,827	± 4,110	

г) убедиться при помощи осциллографа С1-55 (далее – осциллограф) в наличии сдвоенной последовательности электрических импульсов. Временная диаграмма последовательности импульсов должна соответствовать рисунку 3;

Рисунок 3

д) нажать кнопку "fA" на частотомере электронно-счетном Ч3-64/1 (далее - частотомер), произвести измерение частоты последовательности импульсов на контактах 1, 3 относительно объединенных контактов 2, 4 разъема ДУП;

е) переключить схему с резисторами R1, R2 с каналов ДАТ1.1, ДАТ1.2 на каналы ДАТ2.1, ДАТ2.2 рисунка 2;

ж) повторить действия 2.2.6, перечисления в), г);

и) нажать кнопку "fA" на частотомере, произвести измерение частоты последовательности импульсов на контактах 6, 8 относительно объединенных контактов 7, 9 разъема ДУП.

ИПК-3 считается годным, если погрешность измерения частоты не превышает 0,8 от значения, указанного в таблице 3.

2.2.7 Определение диапазона задания скорости и абсолютной погрешности при задании скорости изменения частоты электрических импульсов производить в следующей последовательности:

собрать схему в соответствии с рисунком 4;

R1 – резистор C2-33H-2-2,2 кОм \pm 5 % -A ОЖ0.467.173 ТУ; XS1 – розетка ОНЦ-БС-1-10/14-Р12-3-В бР0.364.030 ТУ. Цепи вести проводом сечением не менее 0,35 мм².

Рисунок 4

в окне программы "TestSrs2" выбрать режим ПРОВЕРКА ФЧС;

• установить на выходе генератора Г5-82 (далее – генератор) частоту импульсов 0,2 Гц (период частоты 5 с, амплитуда 4 В, длительность импульсов 20 мкс);

 установить генератор в режим внутреннего запуска кнопкой ВНУТР;

 установить частотомер в режим измерения периода с внешней синхронизацией последовательным нажатием кнопок "1/fA" и ВП;

• задать значения бандажа, имитируемой начальной скорости и имитируемого начального ускорения в соответствии с таблицей 4 для каждого синтезатора скорости;

Таблица 4

Имитиј ускорен	оуемое ие, м/с ²	Имитируем скорос	ая начальная сть, км/ч	Расчетная скорость изменения частоты, Гц/с		
Бандаж 1350 мм	Бандаж 600 мм	Бандаж 1350 мм	Бандаж 600 мм	Бандаж 1350 мм	Бандаж 600 мм	
-1,00	-1,00	250	250	- 9,903	- 22,281	
-0,52	-0,52	150	150	- 5,149	- 11,586	
-0,40	-0,40	150	150	-3,961	-8,912	
-0,08	-0,08	150	150	- 0,792	- 1,782	
0,08	0,08	20	20	0,792	1,782	
0,40	0,40	20	20	3,961	8,912	

0,52	0,52	20	20	5,149	11,586
1,00	1,00	20	20	9,903	22,281

• провести измерение длительности семи периодов последовательности импульсов на контактах 1, 3 относительно объединенных контактов 2, 4 и на контактах 6, 8 относительно объединенных контактов 7, 9 разъема ДУП;

• вычислить частоту последовательности импульсов Fn, Гц, для каждого периода по формуле

$$F_n = \frac{1}{T_n} , \qquad (1)$$

где *T_n* – результат измерений периода следования импульсов, с;

n - порядковый номер измеренного периода, который изменяется от 2 до 7;

• вычислить значение скорости изменения частоты Vn, Гц/с, для каждого периода по формуле

$$V_n = \frac{(F_n - F_{n-1})}{5} , \qquad (2)$$

где *F_n* - частота последовательности импульсов n-периода, Гц;

n – порядковый номер измеренного периода, который изменяется от 3 до 7.

ИПК-3 считается годным, если значения скорости изменения частоты отличаются от расчетных, указанных в таблице 4, не более, чем на ± 0,036 Гц/с.

2.2.8 Проверку диапазона задания количества импульсов, определение абсолютной погрешности при задании количества электрических импульсов производить в следующей последовательности:

а) собрать схему в соответствии с рисунком 2;

б) в окне программы "TestSrs2" выбрать режим **ПРОВЕРКА ФЧС**;

в) на частотомере задать режим счета импульсов, нажав последовательно кнопки **BC**, "

г) в окне программы "TestSrs2" в текстовом поле напротив надписи "Путь, перемещение, м" ввести имитируемый путь в соответствии с таблицей 5, нажать кнопку OK (обнуление показаний частотомера производится нажатием кнопки "X1/BHM");

Таблица 5

Имитируемый Расчетное количество импульсов	
--	--

путь, м	Бандаж 600 мм	Погрешность	Бандаж 1350	Погрешность
100	2228	± 4	990	± 2
20000	445633	± 120	198059	± 56

д) задать значение бандажа в соответствии с таблицей 5;

 е) в окне программы "TestSrs2" под надписью "Первый синтезатор" в текстовом поле напротив надписи "Скорость, км/ч" ввести значение скорости 50 км/ч, нажать кнопку СТАРТ;

ж) повторить действия 2.2.8, перечисления а) - е) для второго синтезатора.

ИПК-3 считается годным, если измеренное количество импульсов не выходит за пределы погрешностей таблицы 5.

2.2.9 Определение рабочего напряжения и максимального тока выходных каскадов частотных каналов производить в следующей последовательности:

• собрать схему в соответствии с рисунком 5;

включить источник питания Б5-8 и задать напряжение 50 В;

• в окне программы "TestSrs2" выбрать режим **ПРОВЕРКА ФЧС**;

• задать значение имитируемой скорости 50 км/ч на обоих синтезаторах;

• измерить осциллографом максимальное значение напряжения на резисторах R1 - R4;

• вычислить ток *I*, A, выходного ключа по формуле

$$I = \frac{U}{R1} , \qquad (3)$$

где *U* – измеренное напряжение на резисторах на R1 – R4, B; *R1* – номинальное сопротивление, Ом.

R1...R4 – резистор C2-33H-2-2 кОм \pm 1 % -А ОЖ0.467.173 ТУ; XS1 – розетка ОНЦ-БС-1-10/14-Р12-3-В бР0.364.030 ТУ. Цепи вести проводом сечением не менее 0,35 мм².

Рисунок 5

ИПК-3 считается годным, если значение тока I ≥ 0,021 А.

2.2.10 Проверку приема двоичных сигналов производить в следующей последовательности:

• собрать схему в соответствии с рисунком 6;

• в окне программы "TestSrs2" выбрать режим **ПРОВЕРКА ФАС**;

нажать кнопку СТАРТ;

 переключая последовательно тумблеры S1 - S8 убедиться в появлении на мониторе ПЭВМ сообщений о прохождении двоичных сигналов от разъемов "ВХДС-БУ" и "ВХДС-БУС" (окно программы "Двоичные входы БУ" ("Двоичные входы БУС")).

S1...S8 – тумблер ПТ5-1А ОЮЗ.602.334 ТУ; XS1, XS2 – розетка ОНЦ-БС-1-10/14-Р12-2-В бР0.364.030 ТУ. Цепи вести проводом сечением не менее 0,35 мм².

Рисунок 6

ИПК-3 считается годным, если на мониторе ПЭВМ появляются сообщения (исчезновение флажков ("галочек") в соответствующих окнах) обо всех двоичных сигналах от БУС и БУ-3П.

2.2.11 Проверку формирования частотных сигналов производить в следующей последовательности:

собрать схему в соответствии с рисунком 7;

• в окне программы "TestSrs2" выбрать режим **ПРОВЕРКА ФАС;**

R1...R4 – резистор C2-33H-0,5-820 Ом ± 5 % - А ОЖ0.467.173 ТУ; XS1 – розетка ОНЦ-БС-1-10/14-Р12-3-В бР0.364.030 ТУ. Цепи вести проводом сечением не менее 0,35 мм².

Рисунок 7

• задавать последовательно значения частоты для частотных выходов в соответствии с таблицей 6 следующим образом:

Таблица 6

Частотный выход		Задавае	емая час	тота, Гц	
1					
2	200	500	1000	2000	4000
3	200	500	1000	2000	4000
4					
Пределы допускаемой абсолютной погрешности, Гц	± 0,32	± 0,8	± 1,6	± 3,2	± 6,4

 для первого частотного выхода значение частоты выбрать в выпадающем списке под надписью "ЧСТ1" в окне программы TestSrs2;

 для второго частотного выхода значение частоты выбрать в выпадающем списке под надписью "ЧСТ2" в окне программы TestSrs2;

 для третьего частотного выхода значение частоты выбрать в выпадающем списке под надписью "ЧСТЗ" в окне программы TestSrs2;

4) для четвертого частотного выхода значение частоты выбрать в выпадающем списке под надписью "ЧСТ4" в окне программы TestSrs2;

• после задания частоты нажать кнопку CTAPT;

• убедиться при помощи осциллографа в наличии частотных сигналов на контактах 1, 2, 3, 4 разъема "ВЫХЧС-БУС". Временная

диаграмма частотных сигналов должна соответствовать рисунку 8;

Рисунок 8

• нажать кнопку "fA" на частотомере; измерить частотомером частоту выходных сигналов.

ИПК-3 считается годным, если разница между измеренной и задаваемой частотами не превышает величины допускаемой погрешности, приведенной в таблице 6.

2.2.12 Определение абсолютной погрешности формирования токовых сигналов производить в следующей последовательности:

а) собрать схему в соответствии с рисунком 9;

А – вольтметр универсальный Щ31;

R1...R7– резистор C2-29-0,125-100 Ом \pm 0,25 %-1,0-А ОЖ0.467.130 ТУ; XS1, XS2 - розетка ОНЦ-БС-1-10/14-Р12-2-В бР0.364.030 ТУ. Цепи вести проводом сечением не менее 0,35 мм².

Рисунок 9

б) в окне программы "TestSrs2" выбрать режим ПРОВЕРКА ФАС;

в) задавать последовательно значения давления для каждого выхода в соответствии с таблицей 7 следующим образом:

	Имитиру	Имитируемое давление		
заданный ток, мА	кгс/см ²	кПа		
0	0	0		
0,5	1	98		
1,0	2	196		
2,0	4	392		
2,5	5	490		
3,0	6	588		
4,0	8	784		
5,0	10	980		

Таблица 7

1) для выхода "AS-БУС-1" значение тока выбрать в выпадающем списке под надписью "ЦАП1" в окне программы TestSrs2;

2) для выхода "AS-БУС-2" значение тока выбрать в выпадающем списке под надписью "ЦАП2" в окне программы TestSrs2;

3) для выхода "AS-БУС-3" значение тока выбрать в выпадающем списке под надписью "ЦАПЗ" в окне программы TestSrs2;

4) для выхода "AS-БУС-4" значение тока выбрать в выпадающем списке под надписью "ЦАП4" в окне программы TestSrs2;

5) для выхода "AS-3П-1" значение тока выбрать в выпадающем списке под надписью "ЦАП5" в окне программы TestSrs2;

6) для выхода "AS-3П-2" значение тока выбрать в выпадающем списке под надписью "ЦАП6" в окне программы TestSrs2;

7) для выхода "AS-3П-3" значение тока выбрать в выпадающем списке под надписью "ЦАП7" в окне программы TestSrs2;

г) провести измерение сигнала постоянного тока при помощи вольтметра универсального Щ31, вычислить абсолютную погрешность сигнала постоянного тока *DI*, мА, по формуле

$$\Delta I = I_u - I_o \,, \tag{4}$$

где *I*_u – измеренный ток, мА;

*I*_o- заданный ток, мА;

д) повторить измерения сигналов и расчет погрешности для каждого выхода;

е) заменить резисторы R1 – R7 в схеме, собранной в соответствии с рисунком 9, на резисторы C2-29-0,125-1 кОм $\pm\,$ 0,25 %-1,0-A ОЖ0.467.130 ТУ;

ж) повторить действия 2.2.12, перечисления в) – д).

ИПК-3 считается годным, если абсолютная погрешность не превышает ± 0,016 мА;

V1 – вольтметр универсальный В7-54/3;

R1 – магазин сопротивлений P327:

XS1 - розетка ОНЦ-БС-1-10/14-Р12-2-В бРО.364.030 ТУ.

Цепи вести проводом сечением не менее 0,35 мм².

Рисунок 10

и) установить на магазине сопротивлений Р327 сопротивление нагрузки 100 Ом;

к) задавать последовательно следующие значения тока для каждого выхода (ЦАП8...ЦАП13) 4,0; 6,0; 8,0; 10,0; 12,0; 14,0; 16,0; 18,0; 20,0 мА:

1) для выхода "AS-CKT-1" значение тока выбрать в выпадающем списке под надписью "ЦАП8" в окне программы TestSrs2;

2) для выхода "AS-CKT-2" значение тока выбрать в выпадающем списке под надписью "ЦАП9" в окне программы TestSrs2;

3) для выхода "AS-CKT-3" значение тока выбрать в выпадающем списке под надписью "ЦАП10" в окне программы TestSrs2;

4) для выхода "AS-CKT-4" значение тока выбрать в выпадающем списке под надписью "ЦАП11" в окне программы TestSrs2;

5) для выхода "AS-CKT-5" значение тока выбрать в выпадающем списке под надписью "ЦАП12" в окне программы TestSrs2;

6) для выхода "AS-CKT-6" значение тока выбрать в выпадающем списке под надписью "ЦАП13" в окне программы TestSrs2;

л) провести измерение напряжения на зажимах магазина сопротивлений Р327 при помощи вольтметра универсального В7-54/3;

м) вычислить ток I, A, по формуле

$$I = \frac{U}{R} , \qquad (5)$$

где U - измеренное напряжение, В;

R – установленное сопротивление, Ом;

н) установить на магазине сопротивлений Р327 сопротивление нагрузки 500 Ом;

о) повторить действия 2.2.12, перечисления л) – м).

ИПК-3 считается годным, если абсолютная погрешность не превышает \pm 0.016 мА.

2.2.13 Проверку формирования двоичных сигналов производить в следующей последовательности:

• собрать схему в соответствии с рисунком 11;

R1...R36 – резистор C2-33H-2-4,7кОм ± 1 % -А ОЖ0.467.173 ТУ; R37...R44 – резистор C2-33H-1-820 Ом ± 1 % -А ОЖ0.467.173 ТУ; V – вольтметр универсальный Щ31; XS1 – розетка ОНЦ-БС-1-50/27-Р12-1-В 6Р0.364.030 ТУ; XS2 – розетка ОНЦ-БС-1-10/14-Р12-2-В 6Р0.364.030 ТУ. Цети вести проводом сечением не менее 0,35 мм².

Рисунок 11

в окне программы "TestSrs2" выбрать режим ПРОВЕРКА ФДС;

 измерения на каждом выходе ВЫХ БУС и ВЫХ БУ проводить отдельно от других выходов. Измерения проводить при помощи вольтметра универсального ЩЗ1, подключенного к проверяемому выходу;

• устанавливая и снимая флажок в соответствующей ячейке поля "Двоичные выходы (50 В)", контролировать изменение напряжения на проверяемом выходе ВЫХ БУС: уровень логической единицы при установленном флажке (50 ± 2) В; уровень логического нуля, если флажок снят, (0 + 1) В;

• аналогично проводить измерения для ВЫХ БУ, устанавливая и снимая флажок в соответствующей ячейке поля "Двоичные выходы (10 В)", контролировать при этом выходное напряжение на проверяемом ВЫХ БУ: уровень логического нуля (0 + 0,4) В, если флажка нет; уровень логической единицы (10 \pm 1) В, если флажок установлен;

 для проверки контакта 29 ВЫХ БУС (сигнал САУТ) устанавливать и снимать флажок в поле 7 "Двоичные выходы (10 В)";

• для проверки контакта 7 ВЫХ БУ устанавливать и снимать флажок в поле 8 "Двоичные выходы (10 В)"; для проверки контакта 8 ВЫХ БУ установить флажок в поле "Сигнал ИФ" и выбирать: "Единица" – включение сигнала (10 ± 1) В, "Ноль" – выключение сигнала (0 + 1) В.

ИПК-3 считается годным, если выходные напряжения изменяются в указанных пределах.

2.2.14 Определение абсолютной погрешности формирования временного интервала производить в следующей последовательности:

собрать схему в соответствии с рисунком 12;

XS1 – розетка ОНЦ-БС-1-10/14-Р12-1-В бР0.364.030 ТУ. Цепи вести проводом сечением не менее 0,35 мм².

Рисунок 12

• установить частотомер нажатием кнопок "tA-B", "LA" в режим измерения интервала времени, задав режим начала счета по переднему фронту] и окончания счета по заднему фронту]. Входные сопротивления должны быть равны 1 МОм;

• выбрать режим **ПОВЕРКА ВРЕМЕНИ**;

 перевести ИПК-3 в режим формирования интервала времени, нажав кнопку ПУСК. Остановка счёта времени произойдёт по истечении 30 мин или при нажатии кнопки СТОП;

• сравнить время, индицируемое частотомером и ПЭВМ.

ИПК-3 считается годным, если разница во времени на ПЭВМ и частотомере не превышает \pm 0,8 с.

2.2.15 Проверку диапазона и абсолютной погрешности при задании скорости изменения сигнала постоянного тока производить в следующей последовательности:

собрать схему в соответствии с рисунком 13;

R1 – резистор C2-29-0,125-100 Ом ±0,25 %-1,0-А ОЖ0.467.130 ТУ

Рисунок 13

• установить на вольтметре универсальном Щ31 предел измерений 10 мА, включить режим дистанционного пуска;

 установить на выходе генератора импульсный сигнал с параметрами: период 60 с, длительность импульса 3 мкс, амплитуда 4 В;

• загрузить программу "Мастер сценариев;

• в окне программы "Мастер сценариев" во вкладке "Сценарии" выбрать "Проверка плотности";

во вкладке "Процесс" нажать кнопку "Запустить";

 провести измерения сигнала постоянного тока по показаниям вольтметра универсального ЩЗ1 в течение времени спада сигнала постоянного тока: три измерения при заданной плотности 100 с; пять измерений при заданной плотности 200 с; семь измерений при заданной плотности 300 с;

• вычислить величину скорости изменения сигнала постоянного тока к_n, мкА, для каждого значения плотности по формуле

$$k_n = I_n - I_{n+1}, (6)$$

где *I_n* – измеренное значение токового сигнала, мкА;

n – порядковый номер измерения;

 установить на выходе генератора импульсный сигнал с параметрами: период 3 с, длительность импульса 3 мкс, амплитуда 4 В;

• произвести четыре измерения сигнала постоянного тока по показаниям вольтметра универсального Щ31 в течение времени спада сигнала постоянного тока при заданной плотности 10 с; • вычислить величину скорости изменения сигнала постоянного тока, к_n, для каждого значения плотности по формуле (6).

ИПК-3 считается годным, если измеренные значения скорости изменения сигнала постоянного тока отличаются от расчетных значений, указанных в таблице 8, не более, чем на 4,8 мкА/мин и от расчетных значений, указанных в таблице 9, не более, чем на 4 мкА.

Таблица 8

Имитируемая плотность, с	Расчетное значение скорости изменения сигнала постоянного тока, мкА/мин
100	150
200	75
300	50

Таблица 9

Имитируемая плотность, с	Расчетное значение скорости изменения сигнала постоянного тока в течение трех секунд, мкА
10	75

2.2.16 Определение абсолютной погрешности измерения тока производить в следующей последовательности:

собрать схему в соответствии с рисунком 14;

Цепь 1 вести проводом МГШВ 0,35 красного цвета. Цепь 2 вести проводом МГШВ 0,35 синего цвета.

Рисунок 14

 включить питание ФПС-3 переводом клавиши "~220 В" на ФПС-3 в положение ВКЛ;

загрузить программу "Мастер сценариев";

• в окне программы "Мастер сценариев" во вкладке "Сценарии" выбрать TestSrs2;

- в окне программы "TestSrs2" выбрать режим ПРОВЕРКА ФЧС;
- установить флажок в окне "Вкл.АЦП", нажать кнопку СТАРТ;

• задавать на калибраторе программируемом П320 (далее – калибратор) значения тока в диапазоне от 0 до 5 мА с шагом 1 мА и сравнивать со значениями на ПЭВМ.

ИПК-3 считается выдержавшим испытание, если разница значения тока на ПЭВМ и калибраторе не превышает ± 0,005 мА;

переключить разъем с "ДАТ1" на "ДАТ2";

- в окне программы "TestSrs2" выбрать режим ПРОВЕРКА ФЧС;
- установить флажок в окне "Вкл.АЦП", нажать кнопку СТАРТ;

• задавать на калибраторе значения тока в диапазоне от 4 до 20 мА с шагом 2 мА и сравнивать со значениями на ПЭВМ.

ИПК-3 считается выдержавшим испытание, если разница значения тока на ПЭВМ и калибраторе не превышает ± 0,016 мА.

2.2.17 Проверку защиты программного обеспечения средств измерений и данных, подлежащих метрологическому контролю, проводить следующим образом.

2.2.17.1 Произвести проверку защиты программ от несанкционированного доступа в следующей последовательности:

• используя простые средства, например, текстовый редактор, изменить файл программы:

1) TestSrs2.exe 460.3557.00179-02, находящийся по адресу C:\lpk3\TestSrs2\;

2) train.exe 460.3557.00180-04, находящийся по адресу C:\lpk3\train.exe\;

3) Мастер сценариев.exe 460.3557.00257-02, находящийся по адресу С:\Program Files\Mactep сценариев\;

• запустить измененные программы на выполнение.

Программное обеспечение ИПК-3 считается защищенным от несанкционированного доступа, если на экране ПЭВМ появится сообщение об ошибке.

По окончании проверки защиты программного обеспечения средств измерений и данных, подлежащих метрологическому контролю, переустановить программное обеспечение, запустив на выполнение программы-дистрибутивы ИПК-3: SetupIPK3.exe 460.3557.00258-05 и Setup.exe 460.3557.00274-03 диска ЦАКТ.467371.052.

2.2.17.2 Произвести проверку версий программ следующим образом:

открыть папку C:\lpk3\TestSrs2\;

• навести курсор манипулятора "мышь" на проверяемый файл TestSrs2.exe;

• сравнить версию файла с версией 2.0.0.0;

открыть папку C:\lpk3\train\;

• навести курсор манипулятора "мышь" на проверяемый файл Ttrain.exe;

- сравнить версию файла с версией 1.2.0.1;
- открыть папку C:\Program Files\Mactep сценариев\;

 навести курсор манипулятора "мышь" на проверяемый файл Мастер сценариев.ехе;

• сравнить версию файла с версией 1.2.0.1.

ИПК-3 считается выдержавшим испытание, если версии проверяемых файлов совпадают с указанными в 2.2.17.2 настоящей методики поверки.

2.2.17.3 Произвести проверку контрольных сумм файлов следующим образом:

- запустить файловый менеджер FAR;
- открыть папку C:\lpk3\md5sum\;

• скопировать в данную папку проверяемые файлы TestSrs2.exe, Train.exe и Мастер сценариев.exe;

• набрать в командной строке: md5sum.exe TestSrs2.exe Train.exe «Мастер сценариев.exe» >control.txt;

• нажать клавишу ENTER;

• открыть control.txt, сравнить соответствующие контрольные суммы с контрольными суммами, приведенными ниже:

- 1) 5b300e98d4efc17ccd8aea2256c126ef *TestSrs2.exe;
- 2) ffdad2df0b0b7246d43ae1401678877b *Train.exe;
- 3) а06с57с7ее22с8е33f0866032d866с3с *Мастер сценариев.ехе.

ИПК-3 считается выдержавшим испытание, если контрольные суммы проверяемых файлов совпадают с контрольными суммами, приведенными в 2.2.17.3 настоящей методики поверки.

3 Оформление результатов поверки

3.1 Результаты поверки оформляются в соответствии с требованиями ПР 50.2.006.

Приложение А

(справочное)

Перечень сокращений

АЛС - автоматическая локомотивная сигнализация;

БИ-4М3 - блок индикации;

БУ-3В - блок управления;

БУ-3П - блок управления БУ-3П (БУ-3ПА, БУ-3ПВ);

БУС – блок управления и сопряжения БУС (БУС-М);

ДУП – датчик угла поворота;

Л178 – датчик угла поворота;

Л178/1.2 – датчик угла поворота;

МУП – мера угла поворота;

ПЭВМ – персональная электронно-вычислительная машина;

СТЭК-1 – датчик избыточного давления;

ФАС-3 – формирователь аналоговых сигналов;

ФДС-3 – формирователь двоичных сигналов;

ФПС-3 – формирователь и приемник сигналов;

ФЧС-3 – формирователь частотных сигналов.