ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ УРАЛЬСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ (ФГУП «УНИИМ»)

УТВЕРЖДАЮ

Директор ФГУП «УНИИМ»

С.В. Медведевских

2014 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ Масс-спектрометры с индуктивно-связанной плазмой NexION 350 МЕТОДИКА ПОВЕРКИ МП 86-251-2014

Екатеринбург 2014

ПРЕДИСЛОВИЕ

- 1 РАЗРАБОТАНА ФГУП «Уральский научно-исследовательский институт метрологии» (ФГУП «УНИИМ»)
- 2 ИСПОЛНИТЕЛИ Собина Е.П., Горбунова Е.М.
- 3 УТВЕРЖДЕНА зам. директора ФГУП «УНИИМ» в оказар. 2014 г.

СОДЕРЖАНИЕ

1	ОБЛАСТЬ ПРИМЕНЕНИЯ	4
	НОРМАТИВНЫЕ ССЫЛКИ	
	ОПЕРАЦИИ ПОВЕРКИ	
	СРЕДСТВА ПОВЕРКИ	
5	ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
6	УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКИ К НЕЙ	5
7		
8	ПРОВЕДЕНИЕ ПОВЕРКИ	5
	8.1 Внешний осмотр	5
	8.2 ОПРОБОВАНИЕ	5
	8.3 ПРОВЕРКА МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК.	6
9	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	8
П	РИЛОЖЕНИЕ А	9

Государственная система обеспечения единства измерений.

Масс-спектрометры с индуктивно-связанной плазмой NexION 350

МП 86-251-2014

Методика поверки

Дата введения в действие: «В» склястя 2014 г

1 Область применения

Настоящая методика поверки распространяется на масс-спектрометры с индуктивно-связанной плазмой NexION 350 (далее — масс-спектрометры), выпускаемые серийно «PerkinElmer, Inc.» (США), и устанавливает методы и средства первичной и периодической поверок.

Поверка масс-спектрометров должна производиться в соответствии с требованиями настоящей методики. Интервал между поверками – один год.

2 Нормативные ссылки

В настоящей методике поверки использованы ссылки на следующие нормативные документы:

ПР 50.2.006—94 Государственная система обеспечения единства измерений. Порядок проведения поверки средств измерений

ГОСТ 12.2.007.0—75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ПОТ РМ-016-2001 РД 153-34.0-03.150-00 Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок.

3 Операции поверки

3.1 При поверке должны быть выполнены операции, указанные в таблице 1.

Таблица 1- Операции поверки

	Номер пункта ме-	ì	ъ проведения опе- ий при
Наименование операции	тодики по-	первичной	периодической
	верки	поверке	поверке
1	2	3	4
1 Внешний осмотр	8.1	да	да
2 Опробование	8.2	да	да
3 Проверка метрологических характеристик	8.3		
3.1 Проверка уровня фонового сигнала на массе 220 а.е.м.	8.3.1	да	да
3.2 Проверка разрешающей способности	8.3.2	да	да
3.3 Проверка чувствительности	8.3.4	да	да
3.4 Проверка пределов обнаружения	8.3.5	да	да
3.5 Проверка допускаемого относительного СКО выходного сигнала	8.3.6	да	да
3.6 Проверка нестабильности выходного сигнала за 4 часа	8.3.7	да	нет

3.2 В случае невыполнения требований хотя бы к одной из операций, проводится настройка масс-спектрометра в соответствии с руководством по эксплуатации (далее – РЭ). В дальнейшем все операции повторяются вновь, в случае повторного невыполнения требований хотя бы к одной из операций поверка прекращается, масс-спектрометр бракуется.

4 Средства поверки

- 4.1 При проведении поверки применяют следующие средства поверки:
- государственные стандартные образцы состава растворов ионов металлов:

ГСО 7767-2000, аттестованное значение массовой концентрации ионов магния 1 г/дм³; границы относительной погрешности при доверительной вероятности P=0.95 составляют ± 1 %;

ГСО 10278-2013, аттестованное значение массовой концентрации ионов свинца 10 мг/кг; границы относительной погрешности при доверительной вероятности P=0,95 составляют $\pm 0,4$ %;

ГСО 7759-2000, аттестованное значение массовой концентрации ионов бериллия 0,1 мг/см³; границы относительной погрешности при доверительной вероятности P=0,95 составляют ± 1 %;

ГСО 7268-96, аттестованное значение массовой концентрации ионов кобальта 1мг/см^3 ; границы относительной погрешности при доверительной вероятности P=0,95 составляют $\pm 1 \%$;

ГСО 7472-98, аттестованное значение массовой концентрации ионов кадмия 1 мг/см 3 ; границы относительной погрешности при доверительной вероятности P=0,95 составляют ± 1 %.

- барометр-анероид метеорологический (диапазон измерений от 610 до 790 мм рт.ст., пределы допускаемой абсолютной погрешности ± 0.8 мм рт.ст.);
 - термогигрометр ТГЦ-МГ4.01 (диапазон измерений относительной влажности
 - 0-99.9 %, $\Delta=\pm 3$ %, диапазон измерений температуры от минус 30 до 80 °C, $\Delta=\pm 0.5$ °C)
- 4.2 Допускается применение других средств поверки, обеспечивающих требуемую точность и диапазоны измерений.

5 Требования безопасности

При проведении поверки должны быть соблюдены «Правила эксплуатации электроустановок потребителем», «Правила технической безопасности при эксплуатации электроустановок потребителем», требования ГОСТ 12.2.007.0, ПОТ РМ-016-2001 РД 153-34.0-03.150-00.

6 Условия поверки и подготовки к ней

- 6.1 При проведении поверки должны быть соблюдены следующие условия:
- температура окружающего воздуха, °С

от 20 до 25

- относительная влажность воздуха, (при t = 20 °C), %,

от 20 до 80

6.2 Масс-спектрометр устанавливается вдали от источников магнитных и электрических полей.

7 Подготовка к поверке

7.1 Масс-спектрометр подготовить к работе в соответствии с руководством по эксплуатации (далее - РЭ).

8 Проведение поверки

8.1 Внешний осмотр

При внешнем осмотре установить:

- отсутствие видимых повреждений;
- соответствие комплектности указанной в РЭ;
- четкость обозначений и маркировки.
- 8.2 Опробование
- 8.2.1 Проверить работоспособность органов управления и регулировки масс-спектрометра при помощи встроенных систем контроля в соответствии с РЭ.

Перед поверкой выполняются следующие операции: должна быть включена подача аргона, циркуляционная система охлаждения, питание от сети переменного тока и сетевые тумблеры CB1 (Instrument) и CB2 (RF) на масс-спектрометре.

Перед проведением поверки вакуумная часть масс-спектрометра должна быть откачана до уровня $2*10^{-6}$ мм рт. ст., который контролируется по показаниям в окне Instrument Программного обеспечения (ПО) масс-спектрометра при включенной плазме, и масс-спектрометр должен быть прогрет с включенной плазмой не менее 40 минут.

Проводится полное тестирование работы масс-спектрометра в соответствии с разделом Руководства по программному обеспечению "Настройка и Оптимизация". Масс-спектрометр допускается к дальнейшей поверке, только если все результаты тестирования положительные.

8.2.2 Провести проверку идентификационных данных ПО масс-спектрометра.

Наименование ПО, номер версии ПО идентифицируется при включении масс-спектрометра путем вывода на экран номера версии. Цифры в номере версии ПО установки должны соответствовать приведенным в таблице 2.

Таблица 2 - Идентификационные данные программного обеспечения

Идентификационные данные	Идентификацион- ное наименование ПО	Номер версии ПО	Цифровой идентифика- тор ПО	Другие идентификационные данные (алгоритм вычисления цифрового идентификатора ПО)
Значение	Syngistix TM Software	X.X	9174DB7A	CRC32

^{8.3} Проверка метрологических характеристик.

Для последующих расчетов метрологических характеристик масс-спектрометра определяют значения среднего арифметического и стандартного отклонения (параметр SD) интенсивности фона на массах 9, 59, 114, 208, 220 а.е.м. при распылении бидистиллированной или деионизованной воды. В методе указывают: режим скачков по пикам (Peak Hoping в "Scan Mode"), включают режим "QID", задают 20 измерений ("n=20") со временем сбора сигнала 3 секунды на массу (например, 60 для "Sweeps" при 50 мс "DwellTime"). Запускают измерение. Среднее арифметическое (I_i) уровня фонового сигнала рассчитывается в ПО масс-спектрометра и включается в форму отчета, либо рассчитывается по формуле

$$\bar{I} = \frac{1}{n} \sum_{i=1}^{n} I_i, \tag{1}$$

где I_i – i-результат измерения интенсивности масс-спектрометром, имп/с;

n- число измерений интенсивности, равное 60.

Полученные значения уровня фонового сигнала должны удовлетворять требованиям таблицы 3.

Таблица 3 - Метрологические характеристики

	Знач	чения характерист	гик	
Наименование характеристик		Модель NexION	1	
	350Q	350X, 350D	350S	
Диапазон анализируемых масс, а.е.м.		от 1 до 285		
Разрешающая способность, а.е.м.		от 0,6 до 0,8		
Чувствительность (имп/с)/(мкг/дм ³), не				
менее:	8000	8000	10000	
- Mg (Mg-24)	8000	8000	12000	
- Co (Co-59)	11000	11000	12000	
- Pb (Pb-208)				
Пределы обнаружения, нг/дм ³ :			2	
- Be (Be-9)	4	4	3	
- Co (Co-59)	3	2	2	
- Cd (Cd-114)	5	6	4	
Предел допускаемого относительного		3		
СКО выходного сигнала*, %				
Уровень фонового сигнала на массе	5	1 1	1	
220 а.е.м., имп/с, не более				
Нестабильность выходного сигнала спектрометра за 4 часа*, %		4		

^{*-} при массовой концентрации 1 мкг/дм³ и более (время сбора сигнала 3 с)

^{8.3.1} Проверка уровня фонового сигнала на массе 220 а.е.м.

8.3.2 Проверка разрешающей способности

Проверку разрешающей способности масс-спектрометра « $W_{10\%}$ » проводят, определяя ширину пиков на уровне 10% от интенсивности пиков, соответствующих однозарядным ионам Mg-24, Ar₂-76, Pb-208.

Для этого измеряют в режиме сканирования с 20 точками на пик (на а.е.м.) контрольный раствор с содержанием 1 мкг/дм³ по Mg и Pb (Ar₂-76 – всегда присутствующий фоновый молекулярный пик в индуктивно-связанной аргоновой плазме).

В ПО масс-спектрометра необходимо использовать окно MassCal с отмеченным режимом "Peak width only" ("только ширина пика") и метод Tuning, добавив в них ионы указанных выше

Значение разрешающей способности автоматически рассчитывается в ПО масс-спектрометра для каждой массы.

Полученные значения разрешающей способности должны удовлетворять требованиям таблицы 3.

8.3.3 Проверка чувствительности

Чувствительность (S) масс-спектрометра определяют по интенсивности сигналов, соответствующих однозарядным ионам изотопов Be-9, Mg-24, Co-59, Cd-114, Pb-208. В методе указывают: режим скачков по пикам (Peak Hoping в "Scan Mode"), включают режим "QID", задают 5 повторов измерений с временем сбора сигнала 3 секунды на массу в каждом измерении (например. 60 для "Sweeps" при 50 мс "DwellTime"). Чувствительность по Ве и Сd не нормируются и измеряются для определения пределов обнаружения согласно п.8.3.4. Запускают измерение.

Рассчитывают среднее арифметическое значение для каждого из сигналов ("mean") в пересчете на концентрацию, равную 1 мкг/дм³ элемента по формуле

$$S = \frac{\bar{l}_i}{C},\tag{2}$$

 $S = \frac{\bar{l}_i}{c'} \tag{2}$ где \bar{l}_i среднее арифметическое значение интенсивности сигнала масс-спектрометра для i-элемента, имп/с;

C- концентрация i-элемента, равная 1 мкг/дм³.

Полученные значения чувствительности должны удовлетворять требованиям таблицы 3.

8.3.4 Проверка пределов обнаружения

Предел обнаружения (lq) для каждого из элементов Be, Co, Cd определяют по формуле

$$l_q = \frac{3*\sigma*1000}{S},\tag{3}$$

где σ - стандартное отклонение фона, рассчитанное по п. 8.3.1, имп/с;

S - чувствительность, рассчитанная по п. 8.3.3, (имп/сек)/(мкг/дм³)

Если один из рекомендуемых для проверки пределов обнаружения элемент является матричным при постоянных измерениях на конкретном тестируемом масс-спектрометре, то для проведения измерений требуется длительная отмывка или даже замена системы ввода образцов.

Полученные значения пределов обнаружения должны удовлетворять требованиям таблицы 3.

8.3.5 Проверка допускаемого относительного СКО выходного сигнала

Для проверки допускаемого относительного СКО выходного сигнала используют раствор с концентрацией 1 мкг/дм³ следующих элементов: Mg, Cd, Pb. Измерения проводят на изотопах: Mg-24, Cd-114, Pb-208.

Для определения допускаемого относительного СКО выходного сигнала удобно использовать метод "Verifying Short Term Precision.mth" из директории методов Methods—Service ПО массспектрометра. Определяют параметр "RSD" в отчетах программы управления масс-спектрометром, полученный при последовательных измерениях в течение 10 минут в режиме «скачков по пикам» со временем сбора сигнала 3 секунды на каждую из масс 24, 114, 208 а.е.м (что соответствует 50 replicates при 120 sweeps*25 ms на каждую массу), либо рассчитывают по формуле

$$\delta_{\text{OTH}} = \frac{1}{l_i} \sqrt{\frac{\sum_{i=1}^{n} ((l_i - \bar{l})^2}{n - 1}} \cdot 100 , \qquad (4)$$

где I_i - i-результат измерения интенсивности масс-спектрометром, имп/с;

n– число измерений интенсивности.

Полученные значения допускаемого относительного СКО выходного сигнала должны удовлетворять требованиям таблицы 3.

8.3.6 Проверка нестабильности выходного сигнала спектрометра за 4 часа

Для проверки нестабильности выходного сигнала спектрометра за 4 часа используют с концентрацией 1 мкг/дм³ элементов: Mg, Cd, Pb.

Проводят измерения каждые 10 минут в течение 4 часов. При этом каждое отдельное измерение интенсивности состоит из 5-ти последовательных измерений (replicates) в режиме «скачков по пикам» с временем сбора сигнала 3 секунды на каждую из масс Mg-24, Cd-114 и Pb-208.

Нестабильность выходного сигнала спектрометра рассчитывают по формуле

$$\delta_{stab} = \left| \frac{l_{max} - l_{min}}{\bar{l}} \right| * 100 , \qquad (5)$$

где I_{max} , I_{min} — максимальный и минимальный *i*-результаты измерения интенсивности за 4 часа для *i*- элемента соответственно, имп/с;

 \bar{I} - среднее арифметическое результатов измерений интенсивности за 4 часа для i- элемента, имп/с.

Полученные значения нестабильности выходного сигнала спектрометра за 4 часа должны удовлетворять требованиям таблицы 3.

9 Оформление результатов поверки

- 9.1 Оформляют протокол проведения поверки по форме Приложения А.
- 9.2 Положительные результаты поверки оформляют выдачей свидетельства о поверке в соответствии с ПР 50.2.006. Знак поверки наносится на свидетельство о поверке.
- 9.3 При отрицательных результатах поверки масс-спектрометр признают непригодным к дальнейшей эксплуатации, аннулируют свидетельство, гасят клеймо и выдают извещение о непригодности с указанием причин в соответствии с ПР 50.2.006.

Разработчики:

Зав. лаб., к.х.н. лаб. 251 ФГУП «УНИИМ»

Старший научный сотрудник лаб.251, к.х.н. ФГУП «УНИИМ» 🚜

Е.П. Собина

приложение а

(обязательное) ФОРМА ПРОТОКОЛА ПОВЕРКИ

ПРОТОКОЛ № ПРОВЕДЕНИЯ ПОВЕРКИ
Масс-спектрометр модели 350, зав №
Документ на поверку: МП 86-251-2014 «ГСИ. Масс-спектрометры с индуктивно-связанной плаз-
мой NexION 350. Методика поверки».
Информация об использованных средствах поверки:
Условия проведения поверки:
- температура окружающего воздуха, °С
- относительная влажность воздуха, %
Результаты внешнего осмотра
Результаты опробования
Проверия метропогических уарактеристик

Проверка метрологических характеристик

Таблица А.1 - Результаты проверки уровня фонового сигнала на массе 220 а.е.м.

№ п/п	Результаты измерений уровня фонового сигнала на массе 220 а.е.м., имп/с (n=20, время сбора сигнала 3 с)	Среднее арифметическое результатов измерений уровня фонового сигнала на массе 220а.е.м., имп/с	ypo	ормируемые значовня фонового си на массе 220, им Модель NexIOI 350X, 350D	ігнала п/с
1			_		•
2			5	1	1
3					

Таблица А.2 - Результаты проверки разрешающей способности

№	2	Результаты определения раз-		Нормируемые значе шающей способнос Модель NexION	ти, а.е.м
π/n	Элемент	решающей спо- собности, а.е.м.	350Q	350X, 350D	3508
1	Mg-24		от 0,6 до 0,8		
2	Ar-76				
3	Pb-208				

Таблица А.3- Результаты проверки чувствительности

№	Dravovr	Результаты определения чув-		ормируемые значе тельности, (имп/с) Модель NexION)/(мкг/дм ³)
n/n	Элемент	ствительности, (имп/с)/(мкг/дм ³)	350Q	350X, 350D	350S
1	Mg-24		8000	8000	10000
2	Co-59		8000	8000	12000
3	Pb-208		11000	11000	12000

Таблица А.4— Результаты проверки пределов обнаружения

N₂	2	Результаты определения пре-		рмируемые значе лов обнаружения, Модель NexION	нг/дм ³
п/п	Элемент	делов обнаруже- ния, нг/дм ³	350Q	350X, 350D	350S
1	Be-9		4	4	3
2	Co-59		3	2	2
3	Cd-114		5	6	4

Таблица А.5- Результаты проверки допускаемого относительного СКО выходного сигнала

№		Результаты определения отно-	относите	Нормируемые значе пьного СКО выходн %.	ения ного сигнала,
п/п	Элемент	сительного СКО	Модель NexION		
		выходного сиг- нала, %.	350Q	350X, 350D	350S
1	Mg-24				
2	Cd-114			3	
3	Pb-208				

Таблица А.6- Результаты проверки нестабильности выходного сигнала спектрометра за

4 часа

№ п/п	Элемент	Результаты определения ста- бильности выход- ного сигнала спек- трометра за 4 часа, %.	стабильно 350Q	Нормируемые значе ости выходного сиг метра за 4 часа, % Модель NexION 350X, 350D	нала спектро- 6.
1	Mg-24				
2	Cd-114		4		
3	Pb-208				

Результат 1	проведения поверки	4:
Выдано св	идетельство о повеј	рке (извещение о непригодности)
от «» _	20	_ r, №
Поверител	ть Подпись	
Организац	ция, проводившая по	оверку