Федеральное агентство по техническому регулированию и метрологии Федеральное Государственное Унитарное Предприятие «Уральский научно-исследовательский институт метрологии» (ФГУП «УНИИМ»)

УТВЕРЖДАЮ:

Руководитель ГЦИ СИ ФГУП «УНИИМ»

С.В. Медведевских

18 » gerapher 2014 r.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Гистерезисграфы Permagraph

МЕТОДИКА ПОВЕРКИ

MΠ 43-261-2014

Предисловие

1 РАЗРАБОТАНА:

Федеральное государственное унитарное предприятие

«Уральский научно-исследовательский институт метрологии»

(ФГУП «УНИИМ»)

2 ИСПОЛНИТЕЛИ:

Зам. зав. лаб. 261, эксперт-метролог

в области испытаний средств измерений

электрических и магнитных величин

Маслова Т.И.

Ведущий инженер лаб.261

Савичева Е.В.

3 УТВЕРЖДЕНА ФГУП «УНИИМ» « 18 » декоска 2014 г.

4 ВВЕДЕНА ВПЕРВЫЕ

СОДЕРЖАНИЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ	4
2 НОРМАТИВНЫЕ ССЫЛКИ	4
3 ОПЕРАЦИИ ПОВЕРКИ	
4 СРЕДСТВА ПОВЕРКИ	5
5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	6
6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	6
7 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ	6
8 ПРОВЕДЕНИЕ ПОВЕРКИ	6
8.1 Внешний осмотр	6
8.2 Опробование	7
8.3 Проверка сопротивления электрической изоляции гистерезисграфов	7
8.4 Проверка идентификационных данных ПО	
8.5 Определение максимальной напряженности магнитного поля при зазоре 10 мм мех	кду
полюсами электромагнита	
8.6 Определение метрологических характеристик	
8.6.1 Определение относительной погрешности измерения магнитного потока	
8.6.2 Определение относительной погрешности измерения напряженности постоянног	O
магнитного поля	9
8.6.3 Определение случайной составляющей относительной погрешности измерений	
характеристик образца из никеля (J_s) и образца Nd-Fe-B ($H_{cB},B_r,(BH)_{max}$)	
9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	10
ПРИЛОЖЕНИЕ А	11

Государственная система обеспечения единства измерений.	МП 43-261-2014
Гистерезисграф Permagraph.	
Методика поверки.	

Срок введения в действие «___» ____2014

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика (далее – МП) распространяется на Гистерезисграфы Permagraph (далее - гистерезисграфы), предназначенные для проведения измерений кривых намагничивания и размагничивания, петель магнитного гистерезиса образцов магнитотвердых материалов в замкнутой магнитной цепи

Настоящая методика устанавливает процедуру первичной и периодической поверок гистерезисграфов.

Интервал между поверками – один год.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использованы ссылки на следующие нормативные документы:

ПР 50.2.006-94	ГСИ. Порядок проведения поверки средств измерений.
ПР 50.2.012-94	ГСИ. Порядок аттестации поверителей средств измерений.
ПОТ Р М-016-2001	Межотраслевые правила по охране труда при эксплуатации электро-
(РД 153-34.0-03.150-00)	установок (Правила электробезопасности).
РД 50 – 486 - 84	Методические указания. Катушки магнитного потока и измеритель-
	ные катушки. Методы и средства поверки

3 ОПЕРАЦИИ ПОВЕРКИ

3.1 При проведении поверки гистерезисграфов должны выполняться операции согласно таблице 1.

Таблица 1 – Операции поверки

		Номер пункта	Проведение операции при	
No	Наименование операции	методики	первичной	периодиче-
		MO TO ATTACK	поверке	ской поверке
1	2	3	4	5
1	Внешний осмотр	8.1	Да	Да
2	Опробование	8.2	Да	Да
3	Проверка сопротивления электрической изоляции гистерезисграфа	8.3	Да	Нет
4	Проверка идентификационных данных программного обеспечения	8.4	Да	Да
5	Определение максимальной напряженности магнитного поля при зазоре 10 мм между полюсами электромагнита	8.5	Да	Нет

			171	11 43-201-2014
1	2	3	4	5
6	Определение метрологических характери- стик:	8.6		
	 диапазона и относительной погрешно- 			
	сти измерения постоянного магнитного потока;	8.6.1	Да	Да
	 относительная погрешность измерения напряженности магнитного поля; 	8.6.2	Да	Да
	— случайная составляющая относительной погрешности измерения намагниченности насыщения J_s образцах никеля, коэрцитивной силы по индукции H_{cB} , остаточной индукции B_r и энергетического произведения $(BH)_{max}$ на образцах никеля и Nd -Fe-B.	8.6.3	Да	Нет

- 3.2 Если при выполнении той или иной операции выявлено несоответствие установленным требованиям, поверка приостанавливается, выясняются и устраняются причины несоответствия, после этого повторяется поверка по операции, по которой выявлено несоответствие.
- 3.3 В случае повторного выявления несоответствия установленным требованиям поверку прекращают, выдается извещение о непригодности.

4 СРЕДСТВА ПОВЕРКИ

- 4.1 При проведении поверки применяют следующие средства поверки:
- -Тесламетр ТХ-4/1, диапазон измерения магнитной индукции постоянного поля от 0 до 2,0 Тл, относительная погрешность не более 0,5 %;
- -Катушка взаимной индуктивности (далее –КВИ) Р 536, номинальное значение 0,01 Гн, КТ 0,2;
- -Катушка взаимной индуктивности (далее -КВИ) P-536, номинальное значение 0,001 Γ н, KT 0,2:
- —Вольтметр универсальный GDM 8246, диапазон измерений —U до 1000 B, ~ U до 700 B до 100 кГц, I до 20 A, ~I до 20 A до 2 кГц, R до 100 МОм, ПГ по ТО (для диапазона (0 − 2) A, ПГ \pm (0,002·X+5·k) A, для диапазона (0 − 500) Ом, ПГ \pm (0,001·X+4·k) Ом, где X измеренное значение, k − разрешение);
 - -Мегаомметр M4100/3, диапазон измерений (0 100) MOм, КТ 1,0;
- —Термогигрометр CENTER-313, диапазон измерения влажности от 0 до 100 %, абсолютная погрешность $\pm 2,5$ %, диапазон измерения температуры от минус 20 до 60 °C, абсолютная погрешность $\pm 0,7$ °C;
- —Барометр-анероид метрологический М-67, диапазон измерений (610 790) мм рт.ст., $\Pi\Gamma$ =±0,8 мм рт.ст.;
 - 4.2 При проведении поверки используют следующее вспомогательное оборудование:
- -Источник напряжения и тока стабилизированный Б3-796.4, диапазон измерения тока (0-8) A, диапазон измерения напряжения (0-60) B;
 - -Набор концевых мер длины, диапазон измерения (0,5-100) мм;
- -Образцы никеля, входящие в комплект гистерезисграфа и имеющие сертификаты калибровки, выданные калибровочной лабораторией магнитных измерений Magnet-Physik Dr. Steingroever GmbH, Германия;
 - -Образцы МТМ, цилиндрической формы, изготовленные из материала Nd-Fe-B.
- 4.3 При проведении поверки гистерезисграфов допускается применение не указанных в п.4.2 вновь разработанных образцов никеля и МТМ, обеспечивающих определение метрологических характеристик гистерезисграфов с требуемой точностью.

- 4.4 Средства измерений, применяемые для поверки, должны быть поверены и иметь действующие свидетельства о поверке (клейма), стандартные образцы должны иметь действующие паспорта (сертификаты калибровки).
- 4.5 Допускается применять другие средства поверки и вспомогательное оборудование, обеспечивающие определение метрологических характеристик гистерезисграфов с требуемой точностью.

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению операций поверки допускаются специалисты организаций, аккредитованных на право поверки средств измерений в соответствующей области, и ознакомившиеся с технической документацией на гистерезисграфы и настоящей методикой поверки (МП).

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 При проведении поверки гистерезисграфов к работе допускаются лица, прошедшие инструктаж по технике безопасности при работе с электроустановками напряжением до 1000 В.
- 6.2 Средства измерений и испытательное оборудование, применяемые для поверки гистерезисграфов, должны быть заземлены, электрическое сопротивление заземляющего провода не более 0,1 Ом.
- 6.3 При проведении поверки гистерезисграфов должны соблюдаться требования электробезопасности по ГОСТ 12.2.007.0, ГОСТ 12.3.019 и РД 153-34.0-03.150-00 (ПОТ Р М-016).

7 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

7.1 При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С	от 15 до 30
- относительная влажность воздуха, не более, %	5 – 80
- атмосферное давление, кПа	от 86 до 106
- напряжение питающей сети, В	380 ± 38
- частота питающей сети, Гц	50 -60

Вибрация и тряска должны отсутствовать.

- 7.2 Перед проведением поверки гистерезисграфы и средства поверки выдерживают не менее 2 ч в нормальных условиях по 7.1.
- 7.3 Измерительные катушки гистерезисграфов должны быть поверены и иметь действующие свидетельства о поверке, согласно РД 50-486.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

- 8.1.1 При проведении внешнего осмотра устанавливают соответствие комплектности требованиям технической документации на гистерезисграфы.
- 8.1.2 Гистерезисграфы не должны иметь механических повреждений, следов коррозии на металлических частях установки и соленоида.
- 8.1.3 При проведении внешнего осмотра устанавливают наличие заземления гистерезисграфов.
- 8.1.4 Если требования 8.1.1 8.1.3 не выполняются, гистерезисграфы признают непригодными к применению, дальнейшие операции поверки не проводят.

8.2 Опробование

- 8.2.1 При опробовании гистерезисграфов необходимо провести измерения магнитных характеристик образца магнитотвердого материала.
- 8.2.2 При отсутствии показаний гистерезисграфы признаются непригодными к применению, дальнейшие операции поверки не производятся.

8.3 Проверка сопротивления электрической изоляции гистерезисграфов

- 8.3.1 Измерение сопротивления электрической изоляции проводят мегаомметром между замкнутыми концами вилки сетевого питания и корпусом гистерезисграфов.
 - 8.3.2 Сопротивление электрической изоляции должно быть не менее 20 МОм.
- 8.3.3 Если требование 8.3.2 не выполняется, гистерезисграфы признают непригодными к применению, дальнейшие операции поверки не проводят.

8.4 Проверка идентификационных данных ПО

Идентификационные данные ПО должны соответствовать значениям, указанным в таблице 2.

Таблица 2 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Permagraph-Software
Номер версии (идентификационный номер) ПО	7.0.2.3 и выше
Цифровой идентификатор ПО	-
Другие идентификационные данные	-

8.5 Определение максимальной напряженности магнитного поля при зазоре 10 мм между полюсами электромагнита

8.5.1 Устанавливают зазор 10 мм между полюсами электромагнита. В режиме «Ток» выбирают максимальный ток, который может быть установлен. С помощью тесламетра проводят три измерения магнитного поля. Датчик тесламетра устанавливается в центр нижнего или верхнего полюса.

За результат измерения принимают среднее из трех показаний тесламетра.

Измерения проводят для стандартных полюсов, диаметром 92 мм, и концентрирующих полюсов, диаметром 65 мм.

8.5.2 Максимальное значение напряженности магнитного поля рассчитывают по формуле

$$H_{max} = \frac{\bar{B}}{\mu_0},\tag{1}$$

где H_{max} – максимальное значение напряженности магнитного поля, А/м;

 μ_0 — магнитная постоянная, 12,56·10⁻⁷ Гн/м;

 $ar{B}$ — среднее значение результатов измерения тесламетром, Тл.

Максимальная напряженность магнитного поля для зазора 10 мм должна быть не менее 1700 кА/м для электромагнита со стандартными полюсами и 2500 кА/м для электромагнита с концентрирующими полюсами.

8.6 Определение метрологических характеристик

Определяемые метрологические характеристики приведены в таблице 3.

Таблица 3 – Метрологические характеристики

No	Наименование характеристики	Единица измере-	Значение характери-
п.п.	паименование характеристики	РИН	стики
1	Пределы допускаемой относительной		
	погрешности измерения магнитного потока	%	0,5
	Пределы допускаемой относительной		
2	погрешности измерения напряженности		
	постоянного магнитного поля	%	3,0
	Пределы случайной составляющей отно-		
	сительной погрешности измерения:		
3	 намагниченности насыщения образца 		
	из никеля J_s ;	%	0,5
	 коэрцитивной силы по индукции Н_{сВ} и 		
	относительной индукции B _r образца	%	1,5
	Nd-Fe-B;		
	 энергетического произведения (ВН)_{тах} 		
	образца Nd-Fe-B.	%	2,0

8.6.1 Определение относительной погрешности измерения магнитного потока

8.6.1.1 Для определения относительной погрешности измерения магнитного потока собирают схему согласно рисунку 1.

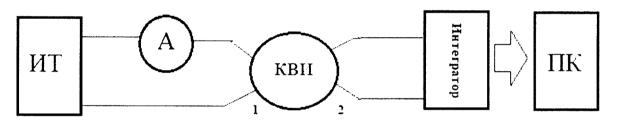


Рисунок 1 – Схема определения погрешности магнитного потока

КВИ – катушка взаимной индуктивности;

A – амперметр;

ИТ – источник тока;

Интегратор – блок интегратора гистерезисграфа;

ПК – персональный компьютер;

- 1 выход первичной обмотки КВИ;
- 2 выход вторичной обмотки КВИ.

На первый выход интегратора гистерезисграфа (Coil 1) подключают вторичную обмотку катушки взаимной индуктивности (КВИ). К первичной обмотке КВИ последовательно подключают источник постоянного тока и амперметр. Для измерения магнитного потока в режиме «Измерение потока» устанавливают предел измерения 640 мВ. Изменяя значения тока с шагом 0,1 A и фиксируя значения тока I_i (A), снимают показания магнитного потока $\Phi_{i\,\text{изм}}$ (Вб). Значения тока изменяют в диапазоне от минус 1 до плюс 1 A.

Повторяют измерения для пределов измерений флюксметра 2180 мВ и 2560 мВ, используя КВИ со значением коэффициента взаимной индуктивности 0,01 Гн и 0,001 Гн.

8.6.1.2 Значение магнитного потока, создаваемого системой «источник питания – амперметр – КВИ», рассчитываем по формуле

$$\Phi_{i \text{ pacy}} = I_i \cdot M, \tag{2}$$

где $\Phi_{i \text{ pacy}}$ - i – тое расчетное значение магнитного потока, Вб;

 $I_i - i$ тое значение тока, подаваемого в первичную обмотку КВИ, А;

M – коэффициент взаимной индуктивности КВИ, Γ н.

8.6.1.3 Относительную погрешность измерения магнитного потока вычисляют по формуле

$$\delta \Phi_i = \frac{|\Phi_{i \text{ pacy}} - \Phi_{i \text{ M3M}}|}{\Phi_{i \text{ pacy}}} \cdot 100, \tag{3}$$

где $\delta\Phi_i$ – относительная погрешность измерения магнитного потока, %;

 $\Phi_{i \text{ изм}}$ – измеренное значение магнитного потока, Вб.

Относительная погрешность измерения магнитного потока не должна превышать 0.5%. 8.6.1.4 Операции разделов 8.6.1.1-8.6.1.3 повторяют для выхода второго интегратора (Coil 2).

8.6.2 Определение относительной погрешности измерения напряженности постоянного магнитного поля

- 8.6.2.1 Относительную погрешность измерения напряженности постоянного магнитного поля определяют для всех видов полюсов при расположении датчика прибора в центре межполюсного пространства и в месте расположения измерительной катушки гистерезисграфа для величины зазора 10 мм.
- 8.6.2.2 Помещают первичный измерительный преобразователь (датчик Холла) прибора TX-4/1 в центре межполюсного пространства электромагнита, входящего в состав гистерезисграфа.

В режиме измерений «Остановка поля» проводят не менее 10 измерений в диапазоне от 100 до 1500 кА/м, фиксируя в момент остановки поля показание прибора TX-4/1 В $_{i\ oбp}$ (Тл) и измеренное гистерезисграфом значение $H_{i\ изм}$ (кА/м).

8.6.2.3 Рассчитывают значения напряженности магнитного поля, измеренные прибором TX-4/1 по формуле

$$H_{i \text{ ofp}} = \frac{B_{i \text{ ofp}}}{\mu_0},\tag{4}$$

где $H_{i \text{ обр}}$ — рассчитанное значение напряженности магнитного поля, кA/м;

 μ_0 – магнитная постоянная, равная 12,56·10⁻⁷ Гн/м;

 $B_{i \text{ обр}}$ — измеренное значение индукции постоянного магнитного поля, Тл.

8.6.2.4 Рассчитывают относительную погрешность измерения напряженности постоянного магнитного поля по формуле

$$\delta H_i = \frac{|H_{i \text{ M3M}} - H_{i \text{ ofp}}|}{H_{i \text{ ofp}}} \cdot 100, \tag{5}$$

где δH_i – относительная погрешность измерения напряженности постоянного магнитного поля, %;

 $H_{i \text{ изм}}$ – измеренное значение напряженности магнитного поля, кА/м;

Относительная погрешность измерения напряженности постоянного магнитного поля не должна превышать 3 %.

8.6.2.5 Повторяют операции разделов 8.6.2.2-8.6.2.4, поместив первичный измерительный преобразователь (датчик Холла) прибора TX-4/1 в месте расположения измерительной катушки гистерезисграфа.

8.6.3 Определение случайной составляющей относительной погрешности измерений характеристик образца из никеля (J_s) и образца Nd-Fe-B (H_{cB} , B_r , (BH)_{max})

Для определения случайной составляющей относительной погрешности измерений характеристик образца используют образец из никеля, входящий в комплект гистерезисграфа и образец Nd-Fe-B.

- 8.6.3.1 На образце из никеля проводят не менее, чем 11-кратные измерения намагниченности насыщения. Измерения проводят не чаще, чем одно измерение в час. После каждого измерения образец удаляют из электромагнита.
- 8.6.3.2 На образце Nd-Fe-B проводят не менее, чем 11-кратные измерения коэрцитивной силы по индукции, остаточной намагниченности и энергетического произведения. Измерения проводят не чаще, чем одно измерение в час. После каждого измерения образец удаляют из электромагнита.
- 8.6.3.3 При проведении измерений согласно разделов 8.6.3.1 8.6.3.2 необходимо обеспечить стабильность максимального магнитного поля в пределах 1%.
- 8.6.3.4 Для рядов значений магнитных характеристик образцов ($J_s, H_{cB}, B_r, (BH)_{max}$) вычисляют среднее арифметическое результатов измерений (\bar{x}) , оценку СКО в абсолютной форме (S) и относительную случайную погрешность результата измерений ($\delta_{\rm cn}$) для доверительной вероятности 0,95 по формулам:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \,, \tag{6}$$

$$\frac{1}{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2},$$
(6)

$$\delta_{cn} = \frac{t_{\alpha,n} \cdot S}{\overline{x}} \cdot 100, \tag{8}$$

где x_i - *i*-тое измеренное значение магнитной характеристики;

 $ar{x}$ – среднее арифметическое значение результатов измерений магнитной характеристики;

n - число измерений;

S – оценка СКО результата измерений магнитной характеристики в абсолютной форме;

 $\delta_{_{\!\mathit{C}^{\!\scriptscriptstyle{7}}}}$ – случайная составляющая относительной погрешности результата измерений магнитной характеристики, %;

 $t_{\alpha,n}$ — коэффициент Стьюдента для доверительной вероятности Р=0,95 и числа степеней свобод (n-1).

8.6.3.5 Случайные составляющие относительной погрешности измерений магнитных характеристик образцов не должны превышать значений, указанных в таблице 3.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки заносят в протокол поверки, форма протокола поверки приведена в приложении А к настоящей МП.
- 9.2 Положительные результаты поверки оформляют согласно ПР 50.2.006 выдачей свидетельства о поверке.
- 9.3 Отрицательные результаты поверки гистерезисграфов оформляют согласно ПР 50.2.006 выдачей извещения о непригодности с указанием причины непригодности, свидетельство о предыдущей поверке аннулировать.

Исполнители:

Зам. зав. лаб. 261, эксперт-метролог в области испытаний средств измерений электрических и магнитных величин

Т.И. Маслова

Ведущий инженер лаб.261

Е. В. Савичева

Приложение A (обязательное)

Форма протокола поверки

Протокол поверки № от20г.
(<u>первичная, периодическая</u>) (ненужное зачеркнуть)
(ненужное зачеркнуть)
Наименование и тип <u>Гистерезисграф Permagraph</u>
Заводской номерИзготовитель Magnet-Physik Dr.Steingroever GmbH, Германия
Принадлежит
Метрологические характеристики:
Номер по Госреестру
Документ на поверку <u>МП 43 – 261 – 2014 «ГСИ. Гистерезисграфы Permagraph. Методика поверки».</u>
Средства измерений, используемые при поверке:
Условия проведения поверки: температура °С, влажность %, атмосферное давление кПа.
Результаты внешнего осмотра, комплектности и маркировки гистерезисграф соответствуют, не соответствуют требованиям 8.1 МП. (ненужное зачеркнуть)
Результаты опробования <u>соответствуют, не соответствуют</u> требованиям 8.2 МП. (ненужное зачеркнуть)
Результаты проверки сопротивления электрической изоляции гистерезисграф соответствуют, не соответствуют требованиям 8.3 МП. (ненужное зачеркнуть)
Результаты проверки идентификационных данных программного обеспечени соответствуют, не соответствуют требованиям 8.4 МП. (ненужное зачеркнуть)
Результаты определения максимальной напряженности магнитного поля между полюсам: электромагнита соответствуют, не соответствуют требованиям 8.5 МП. (ненужное зачеркнуть)

Результаты определения метрологических характеристик

1 Определение диапазона и относительной погрешности измерения магнитного потока

Таблица А1 – Определение относительной погрешности измерения магнитного потока

Номер измерения	I_i , A	Ф _{і расч} , <i>Вб</i>	$\Phi_{i_{ m HSM}}$, $Bar{6}$	$\delta\Phi_i,\%$
«Coil 1»				
1				
2				
«Coil 2»				
1				
2				
•••				

Относительная погрешность измерения магнитного потока соответствует, не соответствует (ненужное зачеркнуть)

требованиям 8.6.1.3 МП

2 Определение относительной погрешности измерения напряженности постоянного магнитного поля.

Таблица A2 — Определение относительной погрешности измерения напряженности постоянного магнитного поля

Mai hu i hoi o i loisi	T ==			
Номер измерения	$H_{i \text{ изм}}$, $\kappa A/M$	$B_{i \text{ ofp}}$, $T\pi$	$H_{i \text{ ofp}}, \kappa A/M$	δH_i , %
Датчик в центре				
катушки				
1				
2				
•••				
10				
Датчик у катушки				
1				
2				
•••				
10				

Относительная погрешность измерения напряженности постоянного магнитного поля <u>соответствует</u>, не соответствует требованиям 8.6.2.4 МП. (ненужное зачеркнуть)

3 Определение случайной составляющей относительной погрешности измерений магнитных характеристик образцов.

Таблица A3 – Определение случайной составляющей относительной погрешности измерений магнитных характеристик образцов

Образец	Измеряемая ха- рактеристика	$ar{x}$	S	$\delta_{\scriptscriptstyle CA},\%$
Ni №	Ј _s , кГс (Тл)			
Nd-Fe-B №	H _{cB} , κΘ (κΑ/м) B _r , κΓc (Τπ) (ΒΗ) _{max} , ΜΓcΘ			

Случайная составляющая относительной погрешности измерений магнитных характеристик образцов <u>соответствует</u>, не соответствует требованиям 8.6.3.5 МП. (ненужное зачеркнуть)

Заключение по результатам поверки

Гистерезисграф Permagraph	<u>соответствует, не соответствует</u> требованиям МП (ненужное зачеркнуть)
Организация, проводящая поверку	
Поверку проводил (подпись)	(инициалы, фамилия)
Дата поверки «»	20 r.
Выдано свидетельство о поверке (изве	ещение о непригодности)
№ от « »	20 г.