

# ФЕДЕРАЛЬНОЕ. БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

## **УТВЕРЖДАЮ**

Заместитель генерального директора

Е.В. Морин

«30» октября 2015 г.

# ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ)

ООО «Тверьобэнергосбыт» 2-я очередь

Методика поверки

РТ-МП-2588-500-2015

ND 62556-15

Москва 2015 Настоящая методика поверки распространяется на систему автоматизированную информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Тверьобэнергосбыт» 2-я очередь и устанавливает порядок проведения первичной и периодической поверок ее информационно-измерительных каналов (далее по тексту – ИИК).

Допускается проведение поверки отдельных ИИК из состава АИИС КУЭ.

Интервал между поверками четыре года:

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «Тверьобэнергосбыт» 2-я очередь (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, формирования отчетных документов и передачи информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Замену отдельных технических компонентов допускается проводить без дополнительной поверки ИИК, если устанавливаемые компоненты поверены и их метрологические характеристики (далее – МХ) совпадают с заменяемыми.

В состав ИИК системы входят измерительные компоненты, приведенные в описании типа АИИС КУЭ.

#### 1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

| Наименование операции                                                                | Номер<br>пункта | Обязательность проведения<br>операции при |               |
|--------------------------------------------------------------------------------------|-----------------|-------------------------------------------|---------------|
|                                                                                      | методики        | первичной                                 | периодической |
|                                                                                      | поверки         | поверке                                   | поверке       |
| 1. Подготовка к поверке                                                              | 6               | Да                                        | Да            |
| 2. Внешний осмотр                                                                    | - 7.1           | Да                                        | Да            |
| 3. Поверка измерительных компонентов<br>АИИС КУЭ                                     | 7.2             | Да                                        | Да            |
| 4. Проверка счетчиков электрической энергии                                          | 7.3             | Да                                        | Да            |
| 5. Проверка функционирования сервера<br>АИИС КУЭ                                     | 7.4             | Да                                        | Да            |
| 6. Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения        | 7.5             | Да                                        | Да            |
| 7. Проверка нагрузки вторичных цепей измерительных трансформаторов тока              | 7.6             | Да                                        | Да            |
| 8. Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком | 7.7             | Да                                        | Да            |
| 9. Проверка хода часов компонентов АИИС КУЭ                                          | - 7.8           | Да                                        | Да            |
| 10. Проверка отсутствия ошибок информационного обмена                                | 7.9             | Да                                        | Да            |
| 11. Оформление результатов поверки                                                   | 8               | Да                                        | Да            |

#### 2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в таблице 2.

Таблица 2 – Средства измерений

| T             |
|---------------|
| Номер пункта  |
| НД по поверке |
| 6             |
|               |
| 6             |
|               |
| 7.6           |
|               |
|               |
| 7.5           |
|               |
|               |
|               |
| 7.7           |
|               |
|               |
|               |
| 7.3           |
| 7.8           |
|               |

# 3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 3.1 К проведению поверки АИИС КУЭ допускают поверителей, аттестованных в соответствии с ПР 50.2.012, изучивших настоящую методику поверки и руководство по эксплуатации на АИИС КУЭ, имеющих стаж работы по данному виду измерений не менее 1 года.
- 3.2 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений мощности нагрузки трансформаторов тока в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже III.
- 3.3 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений мощности нагрузки трансформаторов напряжения в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV.

3.4 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется персоналом, имеющим стаж работы по данному виду измерений не менее 1 года, изучившим документ «Методика выполнения измерений потерь напряжения в линиях соединения счетчика с трансформатором напряжения в условиях эксплуатации» и прошедшим обучение по проведению измерений в соответствии с указанным документом. Измерение проводят не менее двух специалистов, один из которых должен иметь удостоверение, подтверждающее право работы на установках свыше 1000 В с группой по электробезопасности не ниже IV.

#### 4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0, ГОСТ 12.2.007.3, «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей», «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок» ПОТ РМ-016 (РД 153-34.0-03.150), а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.
- 4.2 Эталонные средства измерений, вспомогательные средства поверки и оборудование должны соответствовать требованиям ГОСТ 12.2.003, ГОСТ 12.2.007.3, ГОСТ 12.2.007.7.

#### 5 УСЛОВИЯ ПОВЕРКИ

Условия поверки АИИС КУЭ должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки. -

#### 6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Для проведения поверки представляют следующую документацию:
- руководство по эксплуатации АИИС КУЭ;
- описание типа АИИС КУЭ;
- свидетельства о поверке измерительных компонентов, входящих в ИИК, и свидетельство о предыдущей поверке АИИС КУЭ (при периодической и внеочередной поверке);
- копии паспортов-протоколов на измерительно-информационные комплексы точек учёта (ИИК ТУ);
- рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за интервал между поверками (только при периодической поверке).
  - 6.2 Перед проведением поверки выполняют следующие подготовительные работы:
- проводят организационно-технические мероприятия по доступу поверителей и персонала энергообъектов к местам установки измерительных трансформаторов, счетчиков электроэнергии; по размещению эталонов, отключению в необходимых случаях поверяемых средств измерений от штатной схемы;
- проводят организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и руководствами по эксплуатации применяемого оборудования;
- средства поверки выдерживают в условиях и в течение времени, установленных в нормативных документах на средства поверки;
- все средства измерений, которые подлежат заземлению, должны быть надежно заземлены, подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение после всех отсоединений.

#### 7 ПРОВЕДЕНИЕ ПОВЕРКИ

#### 7.1 Внешний осмотр

- 7.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений измерительных компонентов, наличие поверительных пломб и клейм.
- 7.1.2 Проверяют размещение измерительных компонентов, правильность схем подключения трансформаторов тока и напряжения к счетчикам электрической энергии; правильность прокладки проводных линий по проектной документации на АИИС КУЭ.
- 7.1.3 Проверяют соответствие типов и заводских номеров фактически использованных измерительных компонентов типам и заводским номерам, указанным в формуляре АИИС КУЭ.
- 7.1.4 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

#### 7.2 Поверка измерительных компонентов АИИС КУЭ

Проверяют наличие свидетельств о поверке и срок их действия для всех измерительных компонентов: измерительных трансформаторов тока и напряжения, счетчиков электрической энергии. При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств; срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после поверки этих измерительных компонентов.

#### 7.3 Проверка счетчиков электрической энергии

- 7.3.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на счетчике и испытательной коробке. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения счетчика к цепям тока и напряжения, в частности, правильность чередования фаз. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения счетчиков к цепям тока и напряжения (соответствие схем подключения схемам, приведенным в паспорте на счетчик). Проверяют последовательность чередования фаз с помощью вольтамперфазометра. При провёрке последовательности чередования фаз действуют в соответствии с указаниями, изложенными в руководстве по его эксплуатации.
- 7.3.2 Проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.
- 7.3.3 Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Преобразователь подключают к любому последовательному порту переносного компьютера. Опрашивают счетчик по установленному соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком.
- 7.3.4 Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптопорт.

## 7.4 Проверка функционирования сервера АИИС КУЭ

7.4.1 Проверка программного обеспечения.

Проверка Цифрового идентификатора программного обеспечения происходит на сервере, где установлено ПО «Альфа Центр».

Таблица 1 - Идентификационные данные метрологически значимой части ПО АИИС КУЭ.

| Идентификационные данные (признаки)                                   | Значение                         |
|-----------------------------------------------------------------------|----------------------------------|
| Наименование ПО -                                                     | «Альфа Центр»                    |
| Идентификационное наименование ПО                                     | ac_metrology.dll                 |
| Номер версии (идентификационный номер) ПО                             | 12.01                            |
| Цифровой идентификатор ПО                                             | 3E736B7F380863F44CC8E6F7BD211C54 |
| Алгоритм вычисления цифрового идентификатора программного обеспечения | MD5                              |

Проверка Цифрового идентификатора программного обеспечения происходит на сервере, где установлено ПО «Альфа Центр». Для проверки нужно запустить менеджер файлов, позволяющих производить хэширование файлов (например, Unreal Commander v0.96). В менеджере файлов, необходимо открыть каталог и выделить следующие файлы: ас\_metrology.dll. Далее в закладке Файл Главного меню выбрать команду — Просчитать хэш. После чего получится соответствующее выделенным файлам количество файлов, содержащих код MD5 в текстовом формате. При этом наименование файла MD5 строго соответствует наименованию файла, для которого проводилось хэширование.

- 7.4.2 Проводят опрос текущих показаний всех счетчиков электроэнергии.
- 7.4.3 Проверяют глубину хранения измерительной информации в сервере АИИС КУЭ.
- 7.4.4 Проверяют защиту программного обеспечения на сервере АИИС КУЭ от несанкционированного доступа. Для этого, во первых, запускают на выполнение программу сбора данных и в поле «пароль» вводят неправильный код и, во вторых, запускают на выполнение программу сбора данных при «открытом» доступе к аппаратным средствам ИВК.

Проверку считают успешной, если при вводе неправильного пароля программа не разрешает продолжать работу и журнал событий содержит проведенные значимые действия.

7.4.5 Проверяют работу аппаратных ключей. Выключают сервер и снимают аппаратную защиту (отсоединяют ключ от порта сервера). Включают сервер, загружают операционную систему и запускают программу. Проверку считают успешной, если получено сообщение об отсутствии «ключа защиты».

# 7.5 Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения

- 7.5.1 Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи ТН со счетчиком. Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения первичных и вторичных обмоток ТН. При отсутствии таких документов или нарушении (отсутствии) пломб проверяют правильность подключения первичных и вторичных обмоток ТН.
- $7.5.2~{\rm При}$  проверке мощности нагрузки\_вторичных цепей ТН необходимо убедиться, что отклонение вторичного напряжения при нагруженной вторичной обмотке составляет не более  $\pm 10~{\rm \%}$  от  $U_{{\rm HOM}}$ .

Измеряют мощность нагрузки ТН, которая должна находиться в диапазоне (0,25-1,0) S<sub>HOM</sub>.

Измерение мощности нагрузки вторичных цепей ТН проводят в соответствии с аттестованной в установленном порядке методикой измерений.

#### Примечания:

1 Допускается измерение мощности нагрузки вторичных цепей ТН не проводить, если такие измерения проводились при составлении паспортов—протоколов на данный измерительный канал в течение истекающего интервала между поверками системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТН.

2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам измерительных трансформаторов.

### 7.6 Проверка нагрузки вторичных цепей измерительных трансформаторов тока

- 7.6.1 Проверяют наличие документов энергосбытовых организаций, подтверждающих правильность подключения вторичных обмоток ТТ. При отсутствии таких документов проверяют правильность подключения вторичных обмоток ТТ.
- 7.6.2 Измеряют мощность нагрузки вторичных цепей ТТ, которая должна находиться в диапазоне (0,25-1,0) S<sub>НОМ</sub>. Для трансформаторов с номинальными вторичными нагрузками 1; 2; 2,5; 3; 5 и 10 В·А нижний предел вторичных нагрузок 0,8; 1,25; 1,5; 1,75; 3,75 и 3,75 В·А соответственно.

Измерение тока и вторичной нагрузки TT проводят в соответствии с аттестованной в установленном порядке методикой измерений.

#### Примечания:

- 1 Допускается измерение мощности нагрузки вторичных цепей ТТ не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный ИИК в течение истекающего интервала между поверками системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для ТТ.
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам TT.

# 7.7 Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком

Измеряют падение напряжения  $U_n$  в проводной линии связи для каждой фазы по утвержденному документу «Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации». Падение напряжения не должно превышать 0,25 % от номинального значения на вторичной обмотке TH.

#### Примечания:

- 1 Допускается измерение падения напряжения в линии соединения счетчика с ТН не проводить, если такие измерения проводились при составлении паспортов-протоколов на данный ИИК в течение истекающего интервала между поверками системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше требования.
- 2 Допускается падение напряжения в линии соединения счетчика с ТН определять расчетным путем, если известны параметры проводной линии связи и сила электрического тока, протекающего через линию связи.

#### 7.8 Проверка хода часов компонентов АЦИС КУЭ

Включить радиочасы «МИР РЧ-01», принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS). Сверить показания радиочасов с показаниями часов счетчиков, сервера и опредёлить поправки:  $\Delta t_{1 \text{сервера}}$ .

Спустя сутки определить поправки:  $\Delta t_{2\text{сч}i}$  (где i – номер счетчика),  $\Delta t_{2\text{СЕРВЕРА}}$ . Рассчитать суточный ход часов счетчиков и сервера как разность поправок:  $\Delta_{\Delta t} = \Delta t_2 - \Delta t_1$ 

Считать, что проверка прошла успешно, если ход часов компонентов АИИС КУЭ, не превышает  $\pm 5$  с/сут.

#### 7.9 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального сервера.

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

- 7.9.1 На сервере системы распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30-ти минутным интервалом за полные предшествующие дню проверки сутки по всем ИИК. Проверяют наличие данных, соответствующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонёнта системы.
- 7.9.2 Распечатывают журнал событий счетчика и отмечают моменты нарушения связи между измерительными компонентами системы. Проверяют сохранность измерительной информации в сервере системы на тех интервалах времени, в течение которого была нарушена связь.
- 7.9.3 Распечатывают на сервере профиль нагрузки за полные сутки, предшествующие дню поверки. Используя переносной компьютер, считывают через оптопорт профиль нагрузки за те же сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящейся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и базе данных центрального сервера не должно превышать двух единиц младшего разряда учтенного значения.
- 7.9.4 Рекомендуется вместе с проверкой по п. 7.8 сличать показания счетчика по активной и реактивной электрической энергии строго в конце получаса (часа) и сравнивать с данными, зарегистрированными в сервере системы для того же момента времени. Для этого визуально или с помощью переносного компьютера через оптопорт считывают показания счетчика по активной и реактивной электрической энергии и сравнивают эти данные (с учетом коэффициентов трансформации измерительных трансформаторов), с показаниями зарегистрированными в сервере системы. Расхождение не должно превышать две единицы младшего разряда.

#### 8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 На основании положительных результатов поверки по пунктам раздела 7 настоящей методики поверки выписывается свидетельство о поверке АИИС КУЭ оформленное в соответствии с разделом VI документа «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» утверждённого приказом Минпромторга России от 02 июля 2015 г. № 1815. В приложении к свидетельству указывают перечень ИИК.
- 8.2 На основании положительных результатов поверки отдельных ИИК из состава АИИС КУЭ по пунктам раздела 7 настоящей методики поверки выписывается свидетельство о поверке на поверенные ИИК АИИС КУЭ оформленное в соответствии с разделом VI документа «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» утверждённого приказом Минпромторга России от 02 июля 2015 г. № 1815. В приложении к свидетельству указывают перечень ИИК.
- 8.3 Если АИИС КУЭ по результатам поверки признано непригодной к применению, свидетельство о поверке аннулируется и выписывается извещение о непригодности.

Зам. начальника центра № 500

Р.В. Деев