

ООО Центр Метрологии «СТП»

Регистрационный № RA.RU.311229 от 30.07.2015 г.

Государственная система обеспечения единства измерений

Система измерительная РСУ и ПАЗ первой установки производства цианида натрия ООО «Саратоворгсинтез»

МЕТОДИКА ПОВЕРКИ

МП 2-311229-2015

1.p.62880-15

СОДЕРЖАНИЕ

1 Введение	3
2 Операции поверки	3
3 Средства поверки	4
4 Требования техники безопасности и требования к квалификации поверителей	4
5 Условия поверки	5
6 Подготовка к поверке	5
7 Проведение поверки	5
8 Оформление результатов поверки	7
Приложение А	8

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на систему измерительную РСУ и ПАЗ первой установки производства цианида натрия ООО «Саратоворгсинтез», заводской №01, принадлежащую ООО «Саратоворгсинтез», г. Саратов, и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
- 1.2 «Система измерительная РСУ и ПАЗ первой установки производства цианида натрия ООО «Саратоворгсинтез» (далее ИС) предназначена для непрерывного измерения и контроля параметров технологического процесса в реальном масштабе времени; приема и обработки входных сигналов, формирования сигналов управления и регулирования, осуществления централизованного контроля, дистанционного и автоматического управления техническими средствами эксплуатационно-технологического оборудования; выполнения функций сигнализации по установленным пределам и противоаварийной защиты; накопления, регистрации и хранения информации о состоянии технологических параметров.
- 1.3 ИС состоит из измерительных каналов (далее ИК), операторских станций управления (персональных компьютеров). Для решения задач управления технологическим процессом используются контроллеры SIMATIC S7-400 фирмы «Siemens AG».
 - 1.4 Поверка ИС проводится поэлементно:
- поверка первичных измерительных преобразователей (далее ИП) (средств измерений), входящих в состав ИС, осуществляется в соответствии с их методиками поверки;
- вторичную («электрическую») часть ИС, включая линии связи, поверяют на месте эксплуатации ИС в соответствии с настоящей методикой;
- метрологические характеристики ИК ИС определяют расчетным методом в соответствии с настоящей методикой.
- 1.6 Интервал между поверками первичных ИП (средств измерений), входящих в состав ИС и вторичной («электрической») части ИС в соответствии с описаниями типа на эти ИП.
 - 1.7 Интервал между поверками ИС 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны быть выполнены операции, приведенные в таблице 2.1:

Таблица 2.1 – Операции поверки

№ п/п	Наименование операции	Номер пункта методики поверки
1	Проверка технической документации	7.1
2	Внешний осмотр	7.2
3	Опробование	7.3
4	Определение метрологических характеристик ИС	7.4
5	Оформление результатов поверки	8

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки применяют эталоны и средства измерений (далее – СИ), приведенные в таблице 3.1.

Таблица 3.1 – Эталонные и вспомогательные СИ.

Номер пункта методики	Наименование и тип основного и вспомогательного средства поверки, метрологические и технические характеристики средства поверки
5.1	Барометр-анероид М-67 с пределами измерений от 610 до 790 мм рт. ст., погрешность измерений ± 0.8 мм рт. ст., по ТУ 2504-1797-75
5.1	Психрометр аспирационный М34, пределы измерений влажности от 10 % до 100 %, погрешность измерений ± 5 %.
5.1	Термометр ртутный стеклянный ТЛ-4 (№ 2) с пределами измерений от 0 °C до 55 °C по ГОСТ 28498-90. Цена деления шкалы 0,1 °C.
7.4	Калибратор многофункциональный MC5-R-IS (далее — калибратор): диапазон воспроизведения силы постоянного тока от 0 до 25 мА, пределы допускаемой основной погрешности воспроизведения ±(0,02 % показания + 1 мкА).
-	 Для проведения поверки выбирают эталонные СИ с диапазоном измерений апазонам измерений ИС.

- 3.2 Допускается использование других эталонов и СИ по своим характеристикам не уступающих, указанным в таблице 3.1.
- 3.3 Все применяемые СИ должны иметь действующие поверительные клейма или свидетельства о поверке.

4 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться следующие требования:
- корпуса применяемых СИ должны быть заземлены в соответствии с их инструкциями по эксплуатации;
- ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений;
- работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания;
- обеспечивающие безопасность труда, производственную санитарию и охрану окружающей среды;
- указания, предусмотренные «Правилами технической эксплуатации электроустановок» и «Правилами техники безопасности при эксплуатации электроустановок», а также инструкциями по эксплуатации оборудования, его компонентов и применяемых средств поверки.

К работе по поверке должны допускаться лица:

- достигшие 18-летнего возраста;
- прошедшие специальную подготовку и имеющие удостоверения на право проведения поверки;
 - прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию на ИС, СИ, входящих в состав ИС, средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

5.1 При проведении поверки должны соблюдаться следующие условия:

– температура окружающего воздуха, °С (20 \pm 5);

– относительная влажность, %от 30 до 80;

– атмосферное давление, кПа от 84 до 106,7.

5.2 Вибрация, тряска, удары, наклоны, электрические и магнитные поля, кроме Земного, влияющие на работу приборов, должны отсутствовать.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки выполняют следующие подготовительные операции:
- проверяют заземление СИ, работающих под напряжением;
- эталонные СИ и вторичные ИП ИК устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;
- осуществляют соединение и подготовку к проведению измерений эталонных СИ и вторичных ИП ИК в соответствии с требованиями эксплуатационных документаций.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка технической документации

- 7.1.1 Проверяют наличие следующей технической документации:
- наличие руководства по эксплуатации на ИС;
- наличие паспорта на ИС;
- наличие свидетельства о предыдущей поверке ИС (при периодической поверке);
- наличие паспортов СИ, входящих в состав ИС;
- наличие действующих свидетельств о поверке СИ, входящих в состав ИС;

7.2 Внешний осмотр ИС

- 7.2.1 При проведении внешнего осмотра ИС контролируют выполнение требований технической документации к монтажу СИ, измерительно-вычислительных и связующих компонентов ИС.
- 7.2.2 При проведении внешнего осмотра ИС устанавливают состав и комплектность ИС.
- 7.2.3 Проверку выполняют на основании сведений, содержащихся в паспорте на ИС. При этом контролируют соответствие типа СИ, указанного в паспортах на СИ, записям в паспорте на ИС.
- 7.2.4 Результаты проверки считают положительными, если внешний вид, маркировка и комплектность ИС соответствуют требованиям технической документации.

7.3 Опробование ИС

- 7.3.1 Подтверждение соответствия программного обеспечения ИС
- 7.3.1.1 Подлинность программного обеспечения (далее ПО) ИС проверяют сравнением идентификационных данных ПО с соответствующими идентификационными данными, зафиксированными при испытаниях в целях утверждения типа и отраженными в описании типа ИС.
- 7.3.1.2 Проверяют возможность несанкционированного доступа к ПО системы и наличие авторизации (введение логина и пароля), возможность обхода авторизации, проверка реакции ПО ИС на неоднократный ввод неправильного логина и (или) пароля (аутентификация).
- 7.3.1.3 Результаты опробования считают положительными, если идентификационные данные ПО ИС совпадают с идентификационными данными, которые приведены в описании

типа ИС, а также исключается возможность несанкционированного доступа к ПО ИС и обеспечивается аутентификация.

- 7.3.2 Проверка работоспособности ИС
- 7.3.1.4 Приводят ИС в рабочее состояние в соответствии с технической документацией фирмы-изготовителя. Проверяют прохождение сигналов средств поверки, имитирующих измерительные сигналы. На дисплее монитора операторской станции ИС проверяют показания по регистрируемым в соответствии с конфигурацией ИС параметрам технологического процесса.
- 7.3.1.5 Результаты опробования считаются положительными, если при увеличении/уменьшении значения входного сигнала соответствующим образом изменяются значения измеряемой величины на дисплее монитора операторской станции ИС.

7.4 Определение метрологических характеристик

- 7.4.1 Определение погрешности преобразования аналоговых сигналов (от 4 до 20 мА) ИС в цифровое значение измеряемого параметра
- 7.4.1.1 Отключают первичные измерительные преобразователи измерительного канала (далее ИК) системы и подключают калибратор к соответствующим каналам, включая линии связи и промежуточный измерительный преобразователь (барьер искрозащиты). С помощью калибратора устанавливают на входе канала ввода аналогового сигнала (от 4 до 20 мА) ИК системы электрический сигнал (от 4 до 20 мА), соответствующий значениям измеряемого параметра. Задают не менее пяти значений измеряемого параметра (реперные точки), равномерно распределенных в пределах диапазона измерений (включая крайние точки диапазона). С дисплея монитора операторской станции ИС считывают значения измеряемых параметров.

Примечание «*» — В качестве крайних реперных точек указаны 1 % и 99 % диапазона (в долях соответственно 0,01 и 0,99). Допускается применять любое другое значение в диапазоне от 0 до 1 % (в долях от 0 до 0,01) для нижней реперной точки и от 99 до 100% (в долях от 0,99 до 1,0) для верхней реперной точки.

7.4.1.2 По результатам измерений, выполненных в соответствии с п. 7.4.2.1 настоящей методики, в каждой реперной точке рассчитывают основную приведенную погрешность преобразования аналогового сигнала (от 4 до 20 мА) в цифровое значение измеряемого параметра по формуле:

$$\gamma_{B\Pi} = \frac{I_{u_{3M}} - I_{sm}}{I_{max} - I_{min}} \cdot 100 \%, \tag{1}$$

где

 $I_{_{u_{3M}}}$ — показания системы в *i*-ой реперной точке, мА;

 I_{2m} — показания калибратора в *i*-ой реперной точке, мА;

 $I_{\text{\tiny max}}$ — максимальное значение границы диапазона аналогового сигнала, мА;

 $I_{\scriptscriptstyle min}~-$ минимальное значение границы диапазона аналогового сигнала, мА.

Если показания системы нельзя посмотреть в мА, то при линейной функции преобразования ее рассчитывают по формуле:

$$I_{u_{3M}} = \frac{I_{max} - I_{min}}{Y_{max} - Y_{min}} \cdot (Y_{u_{3M}} - Y_{min}) + I_{min},$$
(2)

где Y_{max} — максимальное значение измеряемого параметра, соответствующее максимальному значению границы диапазона аналогового сигнала (I_{max}), в абсолютных единицах измерений;

 $Y_{_{min}}$ — минимальное значение измеряемого параметра, соответствующее минимальному значению границы диапазона аналогового сигнала ($I_{_{min}}$), в абсолютных единицах измерений;

- 7.4.1.3 Результаты поверки считаются положительными, если основная приведенная погрешность преобразования аналогового сигнала (силы постоянного тока от 4 до 20 мА) в цифровое значение измеряемого параметра, найденные по формуле (1), не выходит за пределы, указанные в таблице А.1 приложения А методики поверки.

7.4.2 Определение погрешности ИК ИС

7.4.2.1 Основную приведенную погрешность ИК рассчитывают по формуле:

$$\gamma_{MK} = \pm 1, 1 \cdot \sqrt{\gamma_{\Pi\Pi}^2 + \gamma_{B\Pi}^2} , \qquad (3)$$

где

/пп – основная приведенная погрешность первичного ИП, %.

7.4.2.2 Основную относительную погрешность ИК рассчитывают по формуле:

$$\delta_{UK} = \pm 1.1 \cdot \sqrt{\delta_{\Pi\Pi}^2 + \left(\gamma_{B\Pi} \cdot \frac{Y_{max} - Y_{min}}{Y_{usm}}\right)^2}, \tag{4}$$

где

 $\delta_{\Pi\!\Pi}$ — основная относительная погрешность первичного ИП, %;

7.4.2.3 Основную абсолютную погрешность ИК рассчитывают по формулам:

$$\Delta_{HK} = \pm 1, 1 \cdot \sqrt{\Delta_{\Pi\Pi}^2 + \Delta_{B\Pi}^2} \,, \tag{5}$$

$$\Delta_{\text{MK}} = 1.1 \cdot \sqrt{\left(\Delta_{\text{III}}\right)^2 + \left(\frac{\gamma_{\text{BII}}}{100\%} \cdot \left(Y_{\text{max}} - Y_{\text{min}}\right)\right)^2}$$
 (6)

где

_____ – основная абсолютная погрешность первичного ИП, %;

7.4.2.4 Результаты поверки считаются положительными, если рассчитанные погрешности для каждого ИК ИС не выходят за пределы, указанные в таблице А.1 приложения А методики поверки.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке ИС в соответствии с ПР 50.2.006-94. К свидетельству о поверке прилагается протокол с результатами поверки ИС.
- 8.2 Отрицательные результаты поверки ИС оформляют в соответствии с ПР 50.2.006-94. При этом свидетельство аннулируется, клеймо гасится, и ИС, не прошедшая поверку, бракуется. Выписывают «Извещение о непригодности к применению» ИС с указанием причин непригодности.

приложение а

Метрологические и технические характеристики ИК ИС

Таблица А.1 – Метрологические и технические характеристики ИК ИС

[C		лы емой č	юи гости		% она)вания	% она)вания	% она эвания	% она)вания
ентов ИК И	ZII	Пределы допускаемой	основнои погрешности	7	±0,5 % диапазона преобразования	±0,5 % диапазона преобразования	±0,5 % диапазона преобразования	±0,4% диапазона преобразования
Метрологические и технические характеристики измерительных компонентов ИК ИС	Вторичный ИП	Типа модуля ввода/вывода	•	9	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0	Модуль ввода SIMATIC S7-300 6ES7336-1HE00-0AB0
ические характерис		Пределы допускаемой	основнои погрешности	5	±0,2 % диапазона измерений	±0,2 % диапазона измерений	±0,2 % диапазона измерений	±0,2 % диапазона измерений
Метрологические и технические	Первичный ИП	Тип	(выходнои сигнал)	4	Cerabar M PMC41 (от 4 до 20 мА)	Cerabar M PMP41 (от 4 до 20 мА	Cerabar M PMP48 (от 4 до 20 мА)	Cerabar M PMP48 (от 4 до 20 мА)
нические	ИС	Пределы допускаемой	основной погрешности	3	±0,6 % диапазона измерений	±0,6 % диапазона измерений	±0,6 % диапазона измерений	±0,5 % диапазона измерений
Метрологические и технические	характеристики ИК ИС	Диапазоны	измерении	2	-500100 мбар -100100 мбар	04 6ap 020 6ap	-11 6ap -14 6ap -110 6ap -200200 мбар 01 6ap 010 6ap	-110 бар
Метр	**	Наиме- нование	ИК ИС	1		XX	давления	

					,				
7	**0,5%	диапазона преобразования	%5′0∓	диапазона преобразования	±0,5 %	диапазона преобразования	+0,5%	диапазона преобразования	±0,5 % диапазона преобразования
9	Модуль ввода	SIMA IIC 87-300 6ES7331-7KF02-0AB0	Модуль ввода	SIMA 11C 37-500 6ES7331-7KF02-0AB0	Модуль ввода	SIMA11C S7-300 6ES7331-7KF02-0AB0	Модуль ввода	SIMATIC S7-300 6ES7331-7KF02-0AB0	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0
5	±(0,15+0,002· t) °C	±0,2 °C	±(0,15+0,002· t) °C	±0,2 °C	±(0,15+0,002· t) °C	±0,2 °C	±(0,15+0,002· t) °C	%80'0∓	±2,0 % измеряемой величины
4	TST434 (Pt100)	ТМТ-180А (от 4 до 20 мА)	TR15 (Pt100)	TMT-180A (от 4 до 20 мА)	TR15 (Pt100)	ТМТ-180А (от 4 до 20 мА)	TR15 (Pt100)	ТМТ-180А (от 4 до 20 мА)	t-mass AT70F (от 4 до 20 мА)
3	Co	HO,0	, , , , , , , , , , , , , , , , , , ,	±1,12 C	Ç	±0,9 °C		±2,8 °C	±3,12 % измеряемой величины ¹⁾
2	() () () () () () () () () ()	-5050 °C		J- 0610c-		0ISU SC		0500 °C	028,8 кг/ч (023 м³/ч)
1				ИК	темпера- туры				ИК массового расхода (индикация объемного расхода)

				r	
7	±0,5 % диапазона преобразования	±0,5 % диапазона преобразования	±0,5 % диапазона преобразования	±0,5% диапазона преобразования	±0,5 % диапазона преобразования
9	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0	Модуль ввода SIMATIC S7-300 6ES7331-7KF02-0AB0
5	±10 %HKIIP	±20 % диапазона измерений ²⁾ ±20 % измеряемой величины ³⁾	±20 % диапазона измерений ⁴⁾ ±20 % измеряемой величины ⁵⁾	±15% диапазона измерений ⁶⁾ ±15% измеряемой величины ⁷⁾	1
4	Satellite XT (от 4 до 20 мА)	Satellite XT (от 4 до 20 мА)	Satellite XT (от 4 до 20 мА)	Satellite XT (от 4 до 20 мА)	
3	±12 % диапазона измерений	±22,05 % диапазона измерений ²⁾ ±22,15 % измеряемой величины ¹⁾³⁾	±22,05 % диапазона измерений ⁴⁾ ±22,15 % измеряемой величины ^{1) 5)}	±16,51 % диапазона измерений ⁶⁾ ±16,65 % измеряемой величины ¹⁾⁷⁾	0,5% диапазона преобразования
2	0100 %НКПР	00,0025 %	00,003 %	00,05 %	от 4 до 20 мА
1	ИК до- взрывных концен- траций горючих газов	ИК содержания диоксида азота	ИК содержания паров синильной кислоты	ИК содержания монооксида углерода	ИК силы постоянно- го тока от 4 до 20 мА

жней границы диапазона измерений. Погрешности для других значений диапазона могут отличаться от указанны) Указанные значения погрешностей рассчитаны для нижней границы диапазона измерений. Погрешности дл ссчитываются по формуле:
H H	ПД
Ç	ей рассчитаны для нь
 Указанные значения погрешности рассчитываются по формулет. 	

$$\delta_{\rm MK} = 1, I_{\sqrt{\left(\delta_{\rm III}\right)^2 + \left(\frac{\gamma_{\rm BI}}{I_{\rm row} - I_{\rm min}} \cdot \left(I_{\rm max} - I_{\rm min}\right)\right)^2}},$$

где δ_{mn} — основная относительная погрешность первичного ИП ИК, %;

- основная приведенная погрешность вторичного ИП ИК;

- измеряемое, максимальное и минимальное значения преобразования токового сигнала вторичного ИП, мА, соответствующие измеряемому, максимальному и минимальному значениям шкалы преобразования определяемого параметра.

2) В диапазоне измерений от 0 до 0,0001 %.

³⁾ В диапазоне измерений от 0,0001 до 0,0025 %.

⁴⁾ В диапазоне измерений от 0 до 0,0003 %.

⁵⁾ В диапазоне измерений от 0,0003 до 0,003 %.

6) В диапазоне измерений от 0 до 0,002 %.
7) В диапазоне измерений от 0,002 до 0,05 %.

Примечание:

Для расчета погрешности ИК в условиях эксплуатации:

- приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная);

- для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности Δ_{cn} измерительного компонента ИК в условиях эксплуатации вычисляют по формуле

$$\Delta_{CM} = \pm \sqrt{\Delta_0^2 + \sum_{i=0}^n \Delta_i^2} \ , \label{eq:delta_CM}$$

пределы допускаемых значений основной погрешности измерительного компонента;

где 🗘

пределы допускаемой дополнительной погрешности измерительного компонента от i-го влияющего фактора в условиях эксплуатации при общем числе и учитываемых влияющих факторов.

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находится его погрешность $\Delta_{
m HK}$, в условиях эксплуатации по формуле

$$\Delta_{HK} = \pm 1, 1 \cdot \sqrt{\sum_{i=0}^{k} (\Delta_{CK_i})^2} \ . \label{eq:deltahat}$$