

000 "Модуль АТИ"

Содержание

1	ОБЩИЕ СВЕДЕНИЯ 3
2	ОПЕРАЦИИ ПОВЕРКИ3
3	СРЕДСТВА ПОВЕРКИ 4
4	УСЛОВИЯ ПОВЕРКИ5
5	ПОДГОТОВКА К ПОВЕРКЕ 5
6	ПРОВЕДЕНИЕ ПОВЕРКИ 6
	6.1 Внешний осмотр
7	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ 13
8	КОРРЕКТИРОВКА МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК 14
Π	РИЛОЖЕНИЕ А 16
Π	РИЛОЖЕНИЕ Б 17
Π	РИЛОЖЕНИЕ В 18
Π	РИЛОЖЕНИЕ Г 19
П	РИЛОЖЕНИЕ Д 20

5,0		
10,0		
20,0		
30,0		
10		
50		
100		
150		
200		

Проверка идентификационных данных ПО:

Идентификационные данные	Значение
Идентификационное	
наименование	
Номер версии	
Цифровой идентификатор	
Алгоритм вычисления цифрового	
идентификатора	

Заключение:_____

Поверитель:

1 ОБЩИЕ СВЕДЕНИЯ

Настоящая методика распространяется на устройства нормирования сигнала УНС-ПА (далее по тексту – УНС-ПА).

Настоящая Методика устанавливает методы и средства первичной и периодической поверки УНС-ПА находящегося в эксплуатации, выпускаемого после ремонта и при выпуске из производства.

Поверка УНС-ПА осуществляется один раз в три года.

При поверке управление модулем и отображение результатов измерений осуществляется программно через интерфейс RS-485.

Измерения проводятся по каждому входу модуля в отдельности.

Для оценки результатов поверки может быть использована программа Excel из комплекта Microsoft Office.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1

Наименование	Номер пункта документа по	Проведение операций при поверки		
	поверке	первичной	периодической	
1 Внешний осмотр	6.1	+	+	
2 Опробование	6.2	+	+	
3 Проверка погрешности измерений напряжения постоянного и переменного тока	6.3.1	+	+	
4 Проверка погрешности измерений силы переменного тока	6.3.2	+	+	
5 Проверка идентификационных данных ПО	6.3.3	+	+	

3 СРЕДСТВА ПОВЕРКИ

При проведении поверки должны быть применены средства, указанные в таблице 2.

Допускается применение других средств поверки при условии обеспечения ими необходимой точности измерений.

Таблица 2

Номер пункта документа по поверке	Наименование и тип основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования и (или) метрологические и основные технические характеристики средства поверки
6.3.1	Калибратор H4-11 напряжение постоянного тока: 0,2 600 В ПГ ±0,1 %; напряжение переменного тока: 0,2 600 В ПГ ±0,3 %; переменный ток: до 50 А ПГ ±0,35 %.
6.3.1	Мультиметр цифровой Арра-79 Напряжение постоянного тока 0,1 мВ 1000 В ПГ± 0,5 %
6.2 6.3.1 6.3.2	Персональный компьютер минимальной конфигурацией 1,5 ГГц, НЖМД 10 ГБ, CD-ROM
6.2 6.3.1 6.3.2	Программное обеспечение: а) операционная система: Windows NT/2000/XP/98; б) тестовое программное обеспечение, поставляемое с УНС-ПА (папка РА.com, исполняемый файл РА.exe) в) Excel Microsoft Office
6.2 6.3.1 6.3.2	Преобразователь интерфейса I-7520 преобразователь интерфейса RS 232 в RS 485

75		
150		
200		
250		
	Канал 2	
0,05		
0,75		
1,0		
1,5		
2,0		
35		
75		
150		
200		
250		

Таблица 3. Определение относительной погрешности измерений силы переменного тока.

		<i>I</i> _{изм} , А		
$I_{\kappa али \delta p}, A$	Фаза			$ \delta_{max} $, %
	А	В	С	
		Канал 1		
0,4				
5,0				
10,0				
20,0				
30,0				
10				
50				
100				
150				
200				
		Канал 2		
0,4				

Приложение Д (рекомендуемое)

Протокол

поверки устройства нормирования сигнала "УНС-ПА" №

Средства поверки:

Условия поверки:

Результат испытаний:

Внешний осмотр соответствует (не соответствует) РЭ

Определение относительной погрешности измерений напряжений

Таблица 1. Определение относительной погрешности измерений напряжения постоянного тока.

$U_{\kappa али \delta p}, \mathrm{B}$	$U_{u_{3M}}, \mathbf{B}$	δ, %
+10		
+ 20		
+ 30		
- 10		
- 20		
- 30		

Таблица 2. Определение относительной погрешности измерений напряжения переменного тока.

$U_{\kappa али \delta p}, \mathrm{B}$		Фаза			
	А	В	C		
	Канал 1				
0,05					
0,75					
1,0					
1,5					
2,0					
35					

6.3.2	Регулируемый источник питания постоянного
	тока
	Напряжение постоянного тока до 30В

4 УСЛОВИЯ ПОВЕРКИ

Поверка проводится в нормальных условиях:

- температура окружающего воздуха (20±5) °С;
- атмосферное давление от 630 до 800 мм.рт.ст.;
- относительная влажность воздуха до 80 %.

5 ПОДГОТОВКА К ПОВЕРКЕ

До начала поверки необходимо выполнить следующие подготовительные работы:

1 Проверить комплектность модуля УНС-ПА;

2 Подготовить УНС-ПА в соответствии с п.13 РЭ;

3 На локальном диске персонального компьютера создать папку «Тест»;

4 В папку «Тест» скопировать все файлы из папки РА.com с диска, поставляемого в комплекте с УНС-ПА.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При проведении внешнего осмотра устанавливается соответствие поверяемого УНС-ПА следующим требованиям:

- комплектность согласно п.2 РЭ;

- четкость обозначения маркировки;

- отсутствие механических повреждений;

- прочность крепления выходных разъемов и интерфейсов, подключенных к устройству;

- отсутствия слабо закрепленных внутренних узлов (определяется на слух при наклонах и встряхиваниях устройства)

Устройства, имеющие дефекты, бракуются и направляются в ремонт.

6.2 Опробование

Для проверки работоспособности УНС-ПА необходимо: 1 Собрать схему (Приложение Г) без вольтметра, указанного на схеме.

2 Запустить программу для связи с УНС-ПА - файл РА.ехе (тестовое ПО).

3 Установить необходимые параметры связи, нажав правую кнопку мыши в окне программы и выбрав:

- номер com-порта, к которому подключен интерфейс от УНС-ПА;

- четность – выключить;

- стоп-бит – два;

- скорость – по состоянию перемычек (РЭ п.7)

4 Подать питание. Убедиться, что на лицевой панели модуля есть индикация.

5 УНС-ПА нормально функционирует, если светодиод «диагн.2» непрерывно мигает, а светодиод «диагн.1» горит

Приложение Г

Схема поверки по постоянному напряжению

(напряжение питания УНС-ПА «Батарея»)

Программа

Приложение В

Схема поверки по переменному току

постоянно, что свидетельствует о готовности устройства к приему информации.

6.3 Определение метрологических характеристик

6.3.1 Проверка погрешности измерений напряжения постоянного и переменного тока

Определение погрешности измерений УНС-ПА во всех режимах измерений осуществляют путем подачи значений измеряемой величины, формируемой калибратором H4-11, на соответствующие входы и измерений выходного напряжения УНС-ПА с дальнейшим отображением полученных результатов в программе «УНС-ПА».

Измерения проводятся в нескольких контрольных точках, указанных в протоколе поверки (таблица 3) для каждого канала измерений напряжения и тока (Напряжение А, Напряжение В, Напряжение С, Ток А, Ток В, Ток С, Батарея). Канал «Батарея» измеряет напряжение питания УНС-ПА.

В каждой контрольной точке этих каналов программно (с помощью интерфейса PA.exe) находятся максимальное и минимальное показание измеряемой величины.

Чтобы увидеть максимальное и минимальное показание, необходимо навести курсор мыши на область показания измеряемой величины в окне программы (рис.1).

Погрешность измерения рассчитывается отдельно для максимального измеренного значения и минимального измеренного значения соответственно по формулам:

$$\mathbf{d}_{MHH} = \frac{V_{MHH} - V_{\kappa}}{V_{\kappa}} \not a 00\% \qquad (1)$$
$$\mathbf{d}_{MAX} = \frac{V_{MAX} - V_{\kappa}}{V_{\kappa}} \not a 00\% \qquad (2)$$

где V_{MAX} и V_{MUH} – соответственно максимальное и минимальное значение измеряемой величины, полученное с УНС-ПА;

V_к – значение измеряемой величины, формируемое калибратором.

адрест Адрест СВерное СВС О С Неправильное С	Укороченный ответ Новый фор НС Бит чётности равен 1	мат	
мнятыя пакет.			
LHL должно быть АЕ:ЭН			
	Бата	рея: 24.012	
	Kauna D	u araa bal	
		Min = 24.000; Do Toku	
ér muserra 151	₩ ₩84 по току	Max = 24.012;	
	ФНЧ по току	% = -0.050; no roky	
Stop Heset Hons dars	РКОВ Напряжение А: 0	Напряжение А: 🛛	
	Напряжение В: 0	Напряжение В:	
100	Напряжение С: 0	Напряжение С:	
	1 0 Tox A: 0.000828	1 0 Ток.А: 0.000052	
	1 0 Tok B: 0.001051	1 0 Ток В: 0.0011109	
Автосохранение	15.0098-0.0365Tox C: 0.55874	14.9045-0.0670/Tox C: 1.0136	
	Частота: 64.500	Hactora: 64,500	
	AKT MOЩHOCTE A: U.UUU	Акт мощность А: 0.000	
Коэффициенты передачи	AKT MOЩHOCTE B: U.UUU	AKT MOЩHOCTS B: 0.000	
	AKT MOЩHOCTS L: U.UUU	AKT MOЩHOCTS L: U.UUU	
Нулевые козффициенты	Peakt MOMHOCTE A: 0.000	Peakt MoulHocts A: 0.000	
	POART MOUNTOCTS D: 0.000	Person Moundation D. 0.000	
Padora c ADE 7758	Flore Manufacts & 0.000	Eloge would be to 0.000	
	Полн машность В: 0.000	Полн мошность В: 0.000	
Программатор	Полн можность С. 0.000	Полн мошность С 0.000	
04-27-00-00-01-20-96-12-			
00:00:92:89:1	9 : C0 : 41 : 00 : 00 : 00 : 00 : 00 : 00 : 0	10:00:00:00:00:18:23:59:3A:E1:B4:8	9:32
:04:27 :00:00:01:30:86:A3:			
00:00:92:89:1	9:C0:41:00:00:00:00:00:00:00:00:00	10:00:00:00:00:65:29:58:3A:A1:56:8	9:32

Рис. 1 Получение максимального и минимального значения измеренной УНС-ПА величины

Проверка выполняется следующим образом:

- 1 Собрать схему поверки в соответствии с проводимой операцией:
- **ü** Приложение А проверка по переменному напряжению в диапазоне от 35 до 250 В;
- **ü** Приложение Б проверка по переменному напряжению в диапазоне от 50 мВ до 2 В;
- **ü** Приложение Γ проверка по постоянному напряжению.
- 2 Подать питание на УНС-ПА;
- 3 Установить в программе РА.ехе интервал опроса УНС-ПА 500 мс;

Приложение Б

Схема поверки по переменному напряжению от 50 мВ до 2 В

Приложение А

Схема поверки по переменному напряжению от 35 до 250 В

- 4 Проверить, что в поле ввода коэффициентов передачи записаны единицы, а поле ввода смещения нули (см. рис. 2).
- 5 Нажать кнопку Start в программе PA.exe;
- 6 В соответствии с протоколом (таблица 3), калибратором в заданных диапазонах установить эталонное значение контролируемой величины в контрольной точке;
- 7 Нажать кнопку «Reset» и подождать 5 с;
- 8 Получить максимальное значение измеряемой величины в окне программы PA.exe;
- 9 Получить минимальное значение измеряемой величины в окне программы PA.exe;
- 10 Произвести расчет погрешности для максимальной измеренной величины (формула 2);
- 11 Провести расчет погрешности для минимальной измеренной величины (формула 1);
- 12 Для выбранной контрольной точки записать результаты измерений (максимальное, минимальное значение измеряемой величины и рассчитанные значения погрешности измерения для max и min);
- 13 Повторить п.6 п.12 для остальных контрольных точек.

6.3.2 Проверка погрешности измерений силы переменного тока

Проверка выполняется для определения погрешности измерений постоянного и переменного тока с использованием датчиков тока (ППТ-35 и ППТ-110).

– ППТ-35 для измерений тока до 30 А;

– ППТ-110 для измерений тока до 200 А.

Датчик тока устанавливается на каждую фазу измерительного канала. Таким образом, получается три датчика на один измерительный канал и максимально на модуль – шесть датчиков.

Важно! При проведении поверки по току (Ток А, Ток В, Ток С) необходимо предварительно в расположенные рядом

поля ввода ввести: в первое - коэффициент передачи датчика, во второе - его смещение. Эти значения для каждого датчика прописываются изготовителем (рис.2).

Проверка выполняется следующим образом:

1 Собрать схему поверки в соответствии с проводимой операцией:

ü Приложение В – проверка по переменному току в диапазоне от 0,4 A до 200 A;

- 2 Подать питание на УНС-ПА;
- 3 Установить в программе РА.ехе интервал опроса УНС-ПА 500 мс;
- 4 Ввести в поля ввода рядом с контролируемой величиной (Ток А, Ток В, Ток С) коэффициент передачи (левое поле) и смещение датчиков (правое поле);
- 5 Нажать кнопку Start в программе PA.exe;
- 6 В соответствии с протоколом (таблица 3), калибратором в заданных диапазонах установить эталонное значение контролируемой величины в контрольной точке;
- 7 Нажать кнопку «Reset» и подождать 5 с;
- 8 Получить максимальное значение измеряемой величины в окне программы PA.exe;
- 9 Получить минимальное значение измеряемой величины в окне программы PA.exe;
- 10 Произвести расчет погрешности для максимальной измеренной величины (формула 2);
- 11 Провести расчет погрешности для минимальной измеренной величины (формула 1);
- 12 Для выбранной контрольной точки записать результаты измерений (максимальное, минимальное значение измеряемой величины и рассчитанные значения погрешности измерения для мах и мин);
- 13 Повторить п.6 п.12 для остальных контрольных точек.

$K \mathbf{g}_{nep} = K_{nep} / (1 + \frac{d}{100})$

где d – полученная при измерении погрешность;

К¢ – новый коэффициент передачи;

К_{пер} – старый коэффициент передачи.

6 Рассчитанный коэффициент записать в соответствующую ячейку в таблице коэффициентов передачи (рис.3):

- «К_{пер} RMS перем. напр.» соответствует переменному напряжению по входам «Напряжение» ;
- «К_{пер} RMS перем. напр. ДТ» соответствует переменному напряжению по входам «Датчики тока».

💛 Коэффициенты передачи								
🙆 🔄 🔒 1 Напряжение №11	[2] №							
Наименование/Канал	Фаза АО	Фаза ВО	Фаза СО	Фаза А1	Фаза B1	Фаза С1		
Кпер RMS перем. напр.								
Клер RMS перем, напр. ДТ								
Клер RMS пост. напр. ДТ								
Коэф. передачи напряжения батареи	Козф. передачи напряжения батареи							
Номер платы								
Параметр Род тока Параметр Гок Перем С Пост	Число г	лат 2 С ПА						

Рис. 3 Таблица коэффициентов передачи

Значения колонок «Фаза АО - Фаза СО» и «Фаза А1 - Фаза С1» используются соответственно в первом и втором каналах измерения.

7 Сохранить измененные коэффициенты в ОЗУ УНС-ПА, нажав кнопку

8 КОРРЕКТИРОВКА МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК

В модуле УНС-ПА предусмотрена возможность корректировки коэффициентов передачи путем изменения данных в программном обеспечении, осуществляющем расчет и отображающем результаты измерений. Корректировка коэффициентов передачи позволяет уменьшить погрешность измерений в каждом из заданных режимов.

Для корректировки коэффициентов необходимо: 1 Собрать:

– для корректировки коэффициентов передачи по переменному напряжению от 35 до 250 В: схему Приложение А;

– для корректировки коэффициентов передачи по переменному напряжению от 50 мВ до 2 В: схему Приложение Б;

 для корректировки коэффициентов передачи по переменному току: схему Приложение В;

– для корректировки коэффициентов передачи по постоянному напряжению от 10 до 30 В: схему Приложение Г.

2 Нажать кнопку Start в программе PA.exe и убедиться, что данные из линии связи поступают.

3 Нажать кнопку «Коэффициенты передачи». Откроется окно для корректировки коэффициентов передачи УНС-ПА.

4 Для загрузки существующих коэффициентов передачи из ОЗУ УНС-ПА нажать кнопку . Данные по коэффициентам передачи отобразятся в появившемся окне в виде таблицы. Ячейки таблицы доступны для редактирования.

5 Произвести расчет, на сколько необходимо изменить коэффициент передачи, по формуле:

Рис.2 Ввод коэффициентов передачи и смещения датчиков

УНС-ПА считается удовлетворяющим требованиям ТУ УНС-ПА. полученные если значения расчетных на погрешностей ЛЛЯ максимального И минимального значений измеренных не превышают значений. установленных в протоколе (Приложение Д).

6.3.3. Проверка идентификационных данных ПО

Проверка идентификационных данных ПО производится после запуска на ПК исполняемого файла PAmetrolog.exe. Идентификационное наименование ПО считывается в левом верхнем углу окна программы. Версия ПО считывается во вкладке «Версия» пункта «Свойства» контекстного меню работы с файлом PAmetrolog.exe, вызываемого нажатием правой кнопки мыши. Цифровой идентификатор вычисляется с помощью программы MD5Hasher.

Идентификационные данные должны совпадать с указанными в Таблице 3.

Таблица 3. Идентификационные данные ПО УНС-ПА.

Идентификационные	Значение
данные	
Идентификационное	УНС-ПА
наименование	
Номер версии	1.0.0.0
Цифровой идентификатор	3d075f39a13b718d4f982f9cf6e2359a
Алгоритм вычисления	MD5
цифрового идентификатора	MDS

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты проверки заносятся в протокол поверки (Приложение Д). Отметка и результат проведения поверки заносится в паспорт.

При положительных результатах поверки на корпус модуля наносится поверочное клеймо, и выписывается свидетельство о поверке.

При отрицательных результатах поверки выписывают извещение о непригодности, устройство бракуют и отправляют на корректировку коэффициентов передачи по п.8 настоящей МП. Затем повторно проводят поверку.