ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ Заместитель генерального директора

ФБУ «Ростест-Москва» Е.В. Морин «Рост М.п. Москва» <u>«07» ноября</u> 2016 г. 16

Государственная система обеспечения единства измерений

Акселерометры Dytran серии 3000

Методика поверки РТ-МП-3934-441-2016

> Москва 2016

Настоящая методика распространяется на акселерометры Dytran серии 3000 (далее - акселерометры) фирмы Dytran Instruments, Inc., и устанавливает порядок и объем их первичной и периодической поверок.

Интервал между поверками 24 месяца.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер	Обязательно опера	сть проведения ции при
наименование операции	пункта НД по поверке	первичной поверке	периодической поверке
Внешний осмотр	7.1	Дa	Да
Опробование	7.2	Дa	Дa
Определение предела допускаемого отклонения коэффициента преобразования на базовой частоте 100 Гц	7.3	Дa	Дa
Определение неравномерности амплитудно- частотной характеристики	7.4	Дa	Дa
Определение нелинейности амплитудной характеристики	7.5	Дa	Дa
Определение относительного коэффициента поперечного преобразования акселерометра	7.6	Дa	Нет

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений и вспомогательные устройства, приведенные в таблице 2.

Таблица 2 – Средства измерений

Номер пункта НД по поверке	Наименование средств поверки
7.3, 7.4, 7.6	Станция для калибровки преобразователей вибрации 9155, диапазон частот: от 0,2 Гц до 20000 Гц, І-го разряда по ГОСТ Р 8.800-2012
7.5	Установка для калибровки акселерометров ударом К9525С, диапазон пикового ударного ускорения: от 196 м/c ² до 98000 м/c ² , І-го разряда по ГОСТ 8.137-84 Установка поверочная ударная УУП-2, диапазон пикового ударного ускорения от 30 до 4000 м/c ²
7.2	Усилитель измерительный Nexus мод. 2692, 0,1-200000 Гц Динамический диапазон 120 дБ, пределы допускаемой абсолютной погрешности ± 0,05 дБ
7.2	Осциллограф цифровой LeCroy WaveAce 2034, диапазон коэффициентов отклонения от 2 мВ/дел до 5 В/дел, пределы допускаемой абсолютной погрешности измерения постоянного напряжения ±(3·10 ⁻² ·U +0,1 дел ·K _{откл} +1 мВ)
Примечание - определение метр	Допускается применение аналогичных средств поверки, обеспечивающих обологических характеристик поверяемых СИ с требуемой точностью.

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки акселерометров допускается инженерно-технический персонал со среднетехническим или высшим инженерным образованием, имеющим опыт работы с аналогичным оборудованием, ознакомленный с эксплуатационной документацией и настоящей методикой поверки.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 К проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности.

4.2 При работе с измерительными приборами и вспомогательным оборудованием должны быть соблюдены требования безопасности, оговоренные в соответствующих технических описаниях и эксплуатационных документах применяемых приборов.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться сл	едующие условия:
температура окружающего воздуха	(20 ± 5) °C;
относительная влажность воздуха	не более 80 %;
атмосферное давление	от 94 до 106 кПа

6 ПОДГОТОВКА К ПОВЕРКЕ

6.1 Проверить наличие средств поверки, укомплектованность их технической документацией (далее - ТД) и необходимыми элементами соединений.

6.2 Используемые средства поверки разместить, заземлить и соединить в соответствии с требованиями ТД на указанные средства.

6.3 Подготовку, соединение, включение и прогрев средств поверки, регистрацию показаний и другие работы по поверке произвести в соответствии с ТД на указанные средства.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие акселерометра следующим требованиям:

• отсутствие видимых механических повреждений корпуса акселерометра, отсутствие внешних повреждений соединительного кабеля, исправность крепежных приспособлений;

• соответствие комплектности и маркировки технической документации.

В случае обнаружения несоответствия хотя бы по одному из вышеуказанных требований, акселерометр признается негодным для применения.

Результаты внешнего осмотра считать удовлетворительными, если акселерометр соответствует вышеперечисленным требованиям, комплектность полная.

7.2. Опробование

Для проведения опробования акселерометров необходимо:

- подготовить акселерометр к работе в соответствии с эксплуатационной документацией;

- разместить акселерометр на рабочем месте, исключив перегибании соединительных кабелей;

- подключить акселерометр к входу усилителя измерительного Nexus мод. 2692;

- выход усилителя соединить с входом (канал 1) осциллографа цифрового «LeCroy WaveAce 2034» (далее – осциллограф);

Слегка постукивая по корпусу акселерометра, контролировать показания осциллографа, подключенного к выходу усилителя.

При изменении выходного сигнала синхронно с ударами, акселерометр признается работоспособным.

Результаты опробования считаются удовлетворительными, если для акселерометров предусмотренная процедура опробования успешно выполняется.

7.3. Определение предела допускаемого отклонения коэффициента преобразования на базовой частоте 100 Гц

Для определения значения коэффициента преобразования на базовой частоте акселерометров необходимо:

- подготовить станцию для калибровки преобразователей вибрации модель 9155 (далее – установка 9155) к проведению измерений коэффициента преобразования в соответствии с «Руководством по эксплуатации»;

- закрепить испытуемый акселерометр на вибрационном столе посредством шпильки (для трехосевых акселерометров допускается крепление при помощи клея);

- подключить акселерометр к входу согласующего усилителя 443B101;

- выход усилителя соединить с входом «Sensor under test» (далее – SUT) установки 9155;

- на ПЭВМ запустить программу для калибровки акселерометров «Accelerometr calibration software» (далее – программа). В меню открывшейся вкладки выбрать опцию «System setup» — «Model number template» (Рисунок 1).

Standard Sensor Data.	Test Manage	ment			11		Te	est Sensor Monit	or.	
Shock Reference Data.					?	Manut	acturer	Glo	balTest	
Model Number Templa	itos	To recall a	test set:			Model	Number		AP19	
Running SUT Specificat	ion Data	Note: Nev	v tests canno	t be performed		Operatio	in Type	Acc	eleration	
Equipment Information		in i	a recalled env	rironment		ID	Number			
Calibration Mass Inform	nation					Time	FET			
N Automatic CSV File Exp	ort [21/08/	15 La	st Calibration		100-	for the second		() Y	
▶ Label Template Setup.	1	01/08/	16 Ci	rrent Calibration		80-				_ 11
Preference		01/08/	17 Ca	libration Due		60-				_
ID Number				unico Numbor		40-				
its number j				avice number		20				
(2) Save Mode						20-				
C New test G App	end / Replace	Master Bo	scall	Verification		0-,	20	40	50 80	100
							Harmon	ic Distorti	on 0.0000	_
(3) Test Mode	Database Statu	IS D. LL N					Signal	/ Noise (d	IB) 0.0000	
Frequency		Status tab	ie to review t	ie Database he recalled data.						
		Status (X)	Status (Y)	Status (Z)			Stan	idard Sensor No	nitor	
Basic Linearity	Frequency (Hz)	10-20000				100.0-	FFI		T 1	
L Auto Run	Linearity (m/s2)					80.0-				
- 2000	Resonance (Hz)					60.0-				
Mponance.	Chack	-				00.0-				
- I Auto Run	Shock	-				40.0-				
Quick	Static G					20.0-				
C User	[maintenal]			Income		0.1-	20	40	60 80	100
Shock	Print Lager	Print & Cert	Panner Cen	Print 2 Certi			Harmon	ic Distorti	on 0.0000	_
							Signal	/ Noise (d	B) 0.0000	_

Рисунок 1. Запуск программы для калибровки акселерометров.

Для занесения в память программы метрологических характеристик испытуемого акселерометра, в открывшемся окне выбрать опцию «Add template» (Рисунок 2).

Рисунок 2. Занесение характеристик испытуемого акселерометра в программу.

В открывшемся окне прописать данные и метрологические характеристики испытуемого акселерометра (Рисунок 3):

- модель;

- производитель;
- паспортная чувствительность;
- значение базовой частоты;
- верхний предел диапазона измерений ускорения;
- габаритные размеры;
- масса;
- диапазон температур

- номинальный предел допускаемого отклонения коэффициента преобразования на базовой частоте.

🚑 🛛	TMS9155 - Accelerometer Calibration Software Eile Sensor Setup Test Mode System Setup User Mode	e Utility <u>W</u> indow About								_ 0 X	2
computer	Model Number Template Record	No. Nagarat		_	_		_			1	
<u>/</u>				Calib	pration Frequen	cies				2	
NEMAX	Manufacturer		-		1	1.					
	Model				Freq (Hz) A	mplitude	Displayed		10000		
	Sensor Type	Acceleration	•	1	5.00	1.00	V	Units	g 💌		
	Operation Type	ICP(r)	-	2	10.00	1.00	~	Default	1.00		
docad32 -	Axis Type	Uni-Axial	-		30.00	1.00	~	Default	1.00		
Shortcut	TEDS Capability	No TEDS	-		50.00	1.00	~				
<u> </u>	Reference Frequency	100.00			100.00	1.00	-	Default	Frequencies		
	Nominal Sensitivity	0.001		-	200.00	1.00	~		1		
01021412	Sensitivity Units		-		500.00	1.00		User F	requencies		
nice Kro Zan	Sensitivity Tolerance (+/-; %)	5.00			500.00	1.00		Traceable	Frequencier		
	Transverse Sensitivity (<; %)	0.00		-	1000.00	1.00	-	Inducation	errequencies		
	Uncertainty (+/-; %)	0.00000		3	2000.00	1.00	~				
	Measurement Range (+/-g)	0.001		10	3000.00	1.00	~				
	Resolution (g-rms)	0.00000000		11	4000.00	1.00	~	Number of	Frequencies	100	
	Overload Limit (g)	0.00		12	7000.00	1.00	~		19		
S .	SNR Threshold (dB)	0.00		13	8000.00	1.00	~				
Network	Nominal Linearity (+/-; %)	0.00		14	9000.00	1.00	~				
	Ref. Shock Level (a) (-525 option)	0		15	10000.00	1.00	~				
	X Low Frequency (Hz) (Range 1)	0.0000	1	16	12000.00	1.00	~	Start Freq	Stop Freq		
	X High Frequency (Hz) (Range 1)	0.0000	_	17	15000.00	1.00	~	10.0	5000.00		
compoter second	(Magnitude Tolerance (+/-: %) (Range 1)	0.00		18	17000.00	1.00	~	C.U.			
	X Phase Tolerance (+/-: den) (Range 1)	0.00		19	20000.00	1.00	~	(Lin			
	X Low Frequency (Hz) (Range 2)	0.0000	_					Oc	t 3 🔻		
	X Low Trequency (12) (Range 2)	0.0000							to mail		
	Mamilada Talasana (1/196) (Banas 2)	0.00	_					AL	JO FIII		
<u> </u>	X Plagminude Tolerance (+/-, %) (Range 2)	0.00	_								
	X Phase Tolerance (+/-, deg) (Range 2)	0.0000		-			×				
ротоколы	X Low Prequency (Hz) (Range 3)	0.0000								100	
	A high Prequency (Hz) (Kañge 3)	0.000		-	1			1			
F	Magnitude Tolerance (+/-; %) (Range 3)	0.00	-		Amplitudes	Clear	r <u>R</u> eset	Cance	Add		(m)
×	A Phase Tolerance (+7-; ded) (Rande 3)	5.00		-							
New	Ready		1	_	TestDate: 0	2/08/16	Test Calibr	ation	It iser Level: Art	vanced	
			1	_	1.000000.00	1	1. Cold Collins		June concerned		0 00
🦻 (2 📋 🛛	🧭 🔛										EN . 10 12 12 02/08/16

Рисунок 3. Занесение в программу метрологических характеристик акселерометра.

- нажать клавишу «Add», в основном меню «Model number template record», добавив тем самым информацию по испытуемому акселерометру в память программы.

- в основном окне выбрать опцию «Runing SUT Specification data» \rightarrow «Add SUT» (Рисунок 4);

- добавить заводской номер испытуемого акселерометра.

1	TMS9155 - Acceleromete	er Calibration Software						L.	- x	~
2	Eile Sensor Setup	Test Mode System Setup	p <u>U</u> ser Mode Utility <u>W</u> indow	About						2
Computer		In	Test M				-	Task Passas Marilan		Also Librid
			100.05	Running SUT Sp	edification			Test senser (Harrison		
NEMAX	Search by:	Sensor ID	Manufacturer M	odel Number	Serial Number	Customer A	ccount Number	Search Reset	2	
		Manufacturer	Model Number	Serial Number	Sensor Type	Operation Type	Axis TEDS	Sensitivity Unit	-	
odbcad52 - Shortcut										
s01021412 Office Pro 2										
Control Panel				Manufacturer	mpløte					
Retwork				Model Number						
Bempores 301A12				Cancel	QK				Ē	
									-	
		Add SUT	Delete SUT	Upda	te SUT	View Bec	cord	QK		
		1								
New Microsof	Ready				Te	stDate: 02/08/16	Test: Calibration	User Level: Ad	vanced	, ING.
🌚 🤌 📺	Ø 🔇				-			A PCB C	INC IN	11:20 0 10 10 11:20 02/08/16

Рисунок 4. Параметры поиска сохраненного акселерометра.

- в меню «SUT Information» выбрать испытуемый акселерометр, используя информацию по производителю и заводскому номеру.

- подтвердить процедуру нажатием клавиши «Ок».
- войти в меню «Frequency» (Рисунок 5).
- произвести измерение коэффициента преобразования на базовой частоте.

	TMS9155 - Accelerometer Calibration Software Eile Sensor Setup Test Mode System Setup	user Mode Utility <u>W</u> indow About		
	-	Size Calibration - Presuency Response Calibration		XPS View
6	Test Settings	Reference Information	Failures Warnings	Manufacturer Dytran Model Number 323461
NEMAX	Test Mode Sweep Up 💌	Frequency 100.00 Hz		Serial Number 10415 Operation Type Acceleration
	Test Level 9.8 m/s^2 💌	Sensitivity Phase		ID Number
odbcad32 -	Shaker PCB - 396C11 💌			Time FET
	Low Frequency 5.00	Start Bias Measurement Static Measurement		100-
\$0024412	High Frequency 10000.00	Bias (V) mV/g	L	60-
	Frequency An	nplitude Sensitivity	Phase Deviation	40-
1				20-
Control Panel	40.0- 30.0~			0-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(ja 20.0-			Harmonic Distortion 0.0000
Network	2 0.0-		+	Signar / Noise (ub) [0.0000
	-10.0-			Standard Sensor Maxitor
Banpocei 301A12	40.0-		1	100.0
	20.0- 20.0-			80.0-
				40.0-
	-10.0-		+	20.0-
Detrocone	-20.0-, , , , , , , , , , , , , , , , , , ,	100.01	000.0 10000.0	0.1-
	Start	Save	Calibration	Harmonic Distortion 0.0000
X	End		Qlose Run Calibration	Signal / Noise (dB) 0.0000
New Microsof	Ready	Uni-Axial	TestDate: 02/08/16	st: Calibration User Level: Advanced
🚳 🤌 🔯	🧭 🤮		and the second se	EN + 40 10 112 02/08

Рисунок 5. Интерфейс измерения ускорения и коэффициента преобразования испытуемого акселерометра.

Таблица 3		
Номинальное значение коэффициента преобразования на базовой частоте 100 Гц, К _п , мВ(пКл)/мс ⁻²	Измеренное значение коэффициента преобразования на базовой частоте 100 Гц, К∂, мВ(пКл)/мс ⁻²	Предел допускаемого отклонения значения коэффициента преобразования от номинального значения на базовой частоте 100 Гц, %
1	2	3

Для определения коэффициента преобразования необходимо выполнить операции, прописанные выше. На установке 9155 воспроизвести ускорение амплитудой 10 м/с² на базовой частоте 100 Гц. Расчет коэффициента преобразования осуществляется установкой 9155 в автоматическом режиме (Рисунок 6).

Для трехосевых акселерометров провести описанную серию измерений для осей X, Y, Z. Полученные результаты измерения коэффициента преобразования (К_д) занести в соответствующую графу таблицы 3.

Определение предела допускаемого отклонения коэффициента преобразования на базовой частоте вычисляют по формуле:

$$\delta = \frac{K_{\delta} - K_n}{K_n} \cdot 100 \tag{1}$$

где: K_n – паспортное значение коэффициента преобразования испытываемого акселерометра; K_{∂} – измеренное значение коэффициента преобразования испытываемого акселерометра.

Для трехосевых акселерометров предел допускаемого отклонения вычисляется для осей X, Y, Z.

Полученные результаты занести в соответствующую графу таблицы 3.

Результаты испытаний по данному пункту считаются удовлетворительными, если предел допускаемого отклонения коэффициента преобразования акселерометра не превышает предельно допустимого значения, указанного в эксплуатационной документации на данную модификацию акселерометра.

7.4. Определение неравномерности амплитудно-частотной характеристики

Для определения неравномерности амплитудно-частотной характеристики необходимо осуществить подключение в соответствии с алгоритмом, прописанным в п.7.3.

На ПЭВМ запустить программу для калибровки акселерометров «Accelerometr calibration software». В меню открывшейся вкладки выбрать опцию «System setup» — «Model number template». В открывшемся окне выбрать опцию «Add template». В открывшемся окне «Calibration Frequencies» прописать не менее 10 точек рабочего диапазона частот испытуемого акселерометра (Рисунок 7). В строке «Magnitude Tolerance» прописать номинальный предел отклонения коэффициента преобразования в рабочем диапазоне частот.

Рисунок 7. Занесение в программу диапазона частот и предела допускаемого отклонения в диапазоне частот

На установке 9155 воспроизвести ускорение, равное 10 м/с². Данное ускорение остается неизменным в каждой из десяти точек, исследуемого диапазона частот. Расчет коэффициента преобразования на каждой частоте осуществляется установкой 9155 в автоматическом режиме.

Определение неравномерности амплитудно-частотной характеристики вычисляют по формуле (1). Полученные результаты занести в таблицу 4.

Таблица 4

Заданная частота, Гц	Измеренное значение коэффициента преобразования на заданной частоте, мВ(пКл)/мс ⁻²	Номинальное значение коэффициента преобразования на базовой частоте 100 Гц, К _п , мB(пКл)/мс ⁻²	Предел допускаемого отклонения значения коэффициента преобразования в рабочем диапазоне частот, %
1	2	3	4

Результаты испытаний по данному пункту считаются удовлетворительными, если неравномерность амплитудно-частотной характеристики акселерометра не превышает предельно допустимого значения, указанного в эксплуатационной документации на данную модификацию акселерометра.

7.5. Определение нелинейности амплитудной характеристики

Для определения нелинейности амплитудной характеристики акселерометров необходимо:

- подготовить установку для калибровки акселерометров ударом К9525С (далее – установка К9525С) к проведению измерений в соответствии с «Руководством по эксплуатации»;

- закрепить испытуемый акселерометр на измерительном столе посредством шпильки (для трехосевых акселерометра допускается крепление при помощи клея);

- подключить акселерометр к входу согласующего усилителя 482A21;

- выход усилителя соединить с входом «Sensor under test» (далее – SUT) установки К9525С.

- на ПЭВМ запустить программу для калибровки акселерометров «Accelerometr calibration software». В меню открывшейся вкладки выбрать опцию «System setup»→ «Model number template» (Рисунок 8).

Рисунок 8. Запуск программы для калибровки акселерометров.

Всего листов 13

Для занесения в память программы информации по испытываемому акселерометру, в открывшемся окне выбрать опцию «Add template» (Рисунок 9).

A	TMS9525 - Accelerometer Calibration Software - v5.4.4			
N 11	Eile Sensor Setup Test Mode System Setup User M	ode Utility Window About		
Computer modal_templ				
	Model Number Template Record	Schagner.	in the second	
			Calibration Frequencies	
	Manufacturer	^		
tyemplate	Model		Freq (Hz) Amplitude Displayed	
	Sensor Type	Acceleration	1 E 00 100 ✓ Units g ▼	
	Operation Type	ICP(r)	1 5.00 1.00 V	
odbrad82-	Axis Type	Uni-Axial 👻	2 10.00 1.00 C Default 1.00	
Shortcut	TEDS Capability	No TEDS	3 30.00 1.00	
	Reference Frequency	100.00	4 SU.UU 1.UU 4 Default Frequencies	
	Nominal Sensitivity	0.001		
000104 Office	Sensitivity Units		5 300.00 1.00 V User Frequencies	
Pro Activati	Sensitivity Tolerance (+/-; %)	5.00		
	Transverse Sensitivity (<; %)	0.00	1000.00 1.00 ✓ Iraceable Frequencies	
	Uncertainty (+/-; %)	0.00000	9 2000.00 1.00 ✓	
Control Panel	Measurement Range (+/-q)	0.001	10 3000.00 1.00 🗸	
	Resolution (g-rms)	0.00000000	11 4000.00 1.00 V Number of Frequencies 100	
<u></u>	Overload Limit (g)	0.00	12 7000.00 1.00 🗸 19	
- 	SNR Threshold (dB)	0.00	13 8000.00 1.00 🗸	
Network	Nominal Linearity (+/-; %)	0.00	14 9000.00 1.00 ✓	4
	Ref. Shock Level (a) (-525 option)	0	15 10000.00 1.00 🗸	
	X Low Frequency (Hz) (Range 1)	0.0000	16 12000.00 1.00 V Start Freq Stop Freq	
	X High Frequency (Hz) (Range 1)	0.0000	17 15000.00 1.00 🗸 10.0 5000.00	
empore .	(Magnitude Tolerance (+/-: %) (Range 1)	0.00	18 17000.00 1.00 ✓	
	X Phase Tolerance (+/-: deg) (Range 1)	0.00	19 20000.00 1.00 V	
	X Low Frequency (Hz) (Range 2)	0.0000	⊙ Oct <u>3</u> ▼	
Zepuck 9525	X High Frequency (Hz) (Range 2)	0.0000	Auto Fill	
	(Magnitude Tolerance (+/,: %) (Range 2)	0.00	Auto Fill	
	X Phase Tolerance (+/-: den) (Range 2)	0.00		
	X Low Frequency (Hz) (Range 3)	0.0000		
Zapuck 9525	X High Eroguoney (Hz) (Range 3)	0.0000	100	
	(Magnitude Tolerance (+/-: %) (Range 3)	0.00		
	Y Phase Tolerance (+/-: dea) (Pance 3)	0.00	Copy Amplitudes Clear Reset Cancel Add	🗊
0	A Phase Tolerance 1177, dear thanke 57			Þ INÞ
Add sut 9525	Ready		TestDate: 28/01/16 Test: Calibration User Level: Advanced	, IN 1999
			A PCR GRO	
🦔 🤗 📁				EN . 40 mm 12:20

Рисунок 9. Занесение характеристик испытуемого акселерометра в программу.

В открывшемся окне прописать данные испытуемого акселерометра (модель, изготовитель, коэффициент преобразования).

- выбрать пункт меню «Amplitudes».

- прописать в открывшемся окне контрольные точки ускорений (25 %, 50 %, 75 % и 100 % от верхнего предела измерений), на которых будут проводиться измерения (Рисунок 10).

- подтвердить введенные значения, нажав клавишу «Ок».

Рисунок 10. Занесение в программу контрольных точек ускорений, на которых будут проводиться измерения.

- нажать клавишу «Add», в основном меню «Model number template», добавив тем самым информацию по испытуемому акселерометру в память программы.

- в основном окне выбрать опцию «Runing SUT Specification data» \rightarrow «Add SUT» (Рисунок 11).

New Yorks	Eile Sensor Setup Test Mode System	a Setup <u>U</u> ser Mode Utility <u>W</u> in	ndow About				
			Test Management			Test Sensor Monitor	
	Search by: Sensor ID	Manufacturer	Model Number	Serial Number	Customer Account Numb		2
IMAX			1, 1	1		Search Res	set
20	Manufacturer	Model Number	Serial Number	Sensor Type	Operation Type Axis	TEDS Sensitivity Un	at
ead2 - orteut							
1							
14 Office Ictivation							
192			Select a Model Number	Templote	1		
ol Panel			Manufacturer				
×.							-
Series and the series of the s			Model Number				
			Çanı	el QK			a l
D							
4.9525		Deleterar		tan cur	_ Manu Dannet _		
	Add SUT	Delete SUT	Up	Jate 501	view Becord	QK	
	Paardy			fr.	artDate: 28/01/16 Test: Cal	bration [Licer Level	P. I
	Reauy			- In	rest. call	Josei Level.	Purdined D. O.O.

Рисунок 11. Параметры поиска сохраненного акселерометра.

- в меню «SUT Information» выбрать испытуемый акселерометр, используя информацию по производителю и заводскому номеру.

- подтвердить процедуру нажатием клавиши «Ок».

- войти в меню «Shock» (Рисунок 12).

- произвести измерение уровней ускорения в каждой контрольной точке согласно РЭ на ударную установку.

nputer modal_templ	INDIDE2 - Kontenneter California Schwarz (2004) File Sensor Setup: Test Mode: System Setup: User Mode: Utility: Window: About Test Texas Note: Test Texas Note:	
< 🗖	Manufacturer PCB	
tyemplate	TMS Transient Calibrator version 3.3.1 - Shock p PO2 p p p p p p p p p	
ad32 - Add trtcut tyempla	Scase Under Text Present Text BP Medical Conv Scale Under Status Present Text Best	
Office Add vati tyemplate r	Data Aspection 0	-
Panel transient calibrator	Monancent Monancent <t< td=""><td>.<u>00</u></td></t<>	. <u>00</u>
onk	Construction Production Construction Construction Production P	
0CM	Angine Henra (b) (j B Line Henra (b) (j B 100	
953	Tet Characters 50° 2 4 5 6 5 5	-
H , 925	Arrian Same (in the second secon	100
1	Harmonic Distortion (20000 Signal / Noise (48) (0.0000	
	Boody DistAvial TechNate: 28/01/16. Tast: Shock Reserved.	=r, //

Рисунок 12. Меню измерения пикового ударного ускорения и коэффициента преобразования испытуемого акселерометра.

Для трехосевых акселерометров провести описанную серию измерений для осей X, Y, Z. За показатель нелинейности амплитудной характеристики принять максимальное по модулю значение, вычисленное по формуле 2:

Лист № 12 Всего листов 13

$$|A_{\max}| = \frac{K_{\partial i} - K_{cp}}{K_{cp}} \cdot 100, (2)$$

где: К_д - измеренный коэффициент преобразования (из табл. 3);

К_{ср} – среднее значение коэффициента преобразования по формуле 3. Вычисление среднего значения коэффициента преобразования (*K*_{*cp*}):

$$K_{cp} = \frac{\sum_{i} K_{\partial i}}{n}$$
(3)

где: $K_{\partial i}$ – коэффициент преобразования в *i*-том измерении ускорения; n – число измерений.

Полученные результаты занести в таблицу 5.

Таблица 5

Заданное значение ускорения, м/с ²	Нелинейность АХ	Среднее значение коэффициента преобразования	Максимальное значение нелинейности АХ, %
1	2	3	4
25%			
50%			
75%			
100%			

Результаты испытаний по данному пункту считаются удовлетворительными, если нелинейность амплитудной характеристики не превышает значение нелинейности амплитудной характеристики, указанное в эксплуатационной документации на данную модификацию акселерометра.

7.6. Определение относительного коэффициента поперечного преобразования акселерометра

Для определения относительного коэффициента поперечного преобразования акселерометров необходимо:

- подготовить установку 9155 для воспроизведения ускорения в соответствии с «Руководством по эксплуатации»;

- подготовить специальное поворотное устройство, обеспечивающее поворот акселерометра вокруг его оси чувствительности на 360° с интервалом не более 30°;

- закрепить поворотное устройство на вибрационном столе установки 9155;

- закрепить испытуемый акселерометр на поворотном устройстве посредством шпильки (для трехосевых акселерометров допускается крепление при помощи клея);

- подключить акселерометр к входу согласующего усилителя 443B101;

- выход усилителя соединить с входом «Sensor under test» установки 9155;

- задать уровень ускорения равный 50 м/с² на базовой частоте 100 Гц;

- после каждого *i*-ого измерения изменять положение акселерометра на 30°, закрепляя его на поворотном устройстве.

Система в автоматическом режиме фиксирует значение коэффициента поперечного преобразования для каждого положения акселерометра, соответствующего повороту вокруг оси чувствительности на 0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°, 300°, 330°.

Полученные результаты занести в таблицу 6.

Коэффициент преобразования на базовой частоте 100Гц, К, мВ(пКл)/м·с ⁻²	Заданный уровень ускорения, м/с ²	Угол поворота, °	Коэффициент поперечного преобразования, К _{ді,} мВ(пКл)/м·с ⁻²	Относительный коэффициент поперечного преобразования, %
1	2	3	4	5
		0		
		30		
		60		
		90		
		120		
		150		
		180		
		210		
		240		
		270		
		300		
		330		

Вычислить относительный коэффициент поперечного преобразования по формуле (4):

$$K_{II} = \frac{K_{cp}}{K} \cdot 100 \tag{4}$$

где: К_П – относительный коэффициент поперечного преобразования

К – коэффициент преобразования акселерометра, определенный в п. 7.3;

К_{ср} – среднее значение коэффициента преобразования акселерометра рассчитанное по формуле (3).

Результаты испытаний по данному пункту считаются удовлетворительными, если относительный коэффициент поперечного преобразования акселерометра не превышает значение, указанное в эксплуатационной документации на данную модификацию акселерометра.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Результаты измерений, полученные в процессе поверки, заносят в протокол произвольной формы.

8.2 При положительных результатах поверки выдается свидетельство о поверке в соответствии с приказом Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015.

8.3 При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании, или выполнении операций поверки, выдается извещение о непригодности в соответствии с приказом Министерства промышленности и торговли Российской Федерации № 1815 от 02.07.2015.

Начальник лаборатории № 441 ФБУ «Ростест - Москва»