Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им.Д.И.Менделеева

Государственная система обеспечения единства измерений

Спектрометры флуоресцентные Cary Eclipse Fluorescence Spectrophotometer

> Методика поверки МП-242-2090-2017

> > Руководитель НИО Государственных эталонов в области физико-химических измерений ФГУП «ВНИИМ им.Д.И.Менделеева»

Л.А.Конопелько

Ст.научный сотрудник ФГУП «ВНИИМ им.Д.И.Менделеева»

1 pm М.А.Мешалкин

г. Санкт-Петербург 2017 г. Настоящая Методика распространяется на спектрометры флуоресцентные Cary Eclipse Fluorescence Spectrophotometer (далее по тексту спектрометры) и устанавливает методы и средства их первичной поверке (после ввода в эксплуатацию и после ремонта) и периодической поверке в процессе эксплуатации. Интервал между поверками - 1 год.

1. ОПЕРАЦИИ ПОВЕРКИ

Таблица 1 – Операции поверки

<u>№</u>	Наименование операций	Номер пунк-	Обязательность проведения	
11/11		та методики	в эксплуатации после рег	после ремонта
1.	Внешний осмотр.	6.1	да	да
2.	Проверка соответствия ПО.	6.2	да	да
3.	Опробование.	6.3	да	да
4.	Определение метрологиче- ских характеристик.	6.4	д а ¹⁾	да

2. СРЕДСТВА ПОВЕРКИ

- 1. Вода для лабораторного анализа высокой степени очистки по ГОСТ Р 52501-2005.
- 2. Термогигрометр электронный утвержденного типа, зарегистрированный в Федеральном информационном фонде по ОЕИ (диапазон измерений отн. влажности от 10 до 100 %; абсл. погрешность не более 3,0 %; диапазон измерений температуры от +10 до +40 °C; абсл. погрешность не более 0,5 °C).
- 3. Барометр-анероид М-110 или аналогичный.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.

3. УСЛОВИЯ ПОВЕРКИ

3.1. При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха, °С	от 15 до 25;
- атмосферное давление, кПа	от 84 до 107;
- относительная влажность воздуха, %	не более 80;
- напряжение питания переменного тока, В	220 ⁺²² -33;
- частота переменного тока, Гц	50±1.

3.2 Перед проведением поверки спектрометр следует прогреть в течении не менее двух часов.

3.3. Установка и подготовка прибора к поверке, включение соединительных устройств, заземление, выполнение операций при проведении контрольных измерений осуществляется в соответствии с эксплуатационной документацией.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Требования безопасности должны соответствовать рекомендациям, изложенным в Руководстве по эксплуатации на спектрометры.

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица, имеющие техническое образование, изучившие Руководство по эксплуатации спектрометра (далее — РЭ) и методику поверки и имеющие удостоверение поверителя. Для снятия данных при поверке допускается участие операторов, обслуживающих спектрометр (под контролем поверителя).

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1. Внешний осмотр.

При проведении внешнего осмотра должно быть установлено:

- наличие эксплутационной документации (на русском языке);

- отсутствие механических повреждений корпусов блоков;

- целостность показывающих приборов;

- правильность размещения прибора на рабочей поверхности стола (согласно руководства по эксплуатации).

6.2. Проверка соответствия программного обеспечения.

6.2.1. Проверка соответствия программного обеспечения заключается в проверке номера версии.

6.2.1.1. Определение осуществляется следующим образом:

- в главном окне программы в строке команд щелкнуть мышью на команде «Help» (Помощь). В открывшемся окне щелкнуть мышью по строке «About» (О программе), в результате чего откроется окно, в котором приведены идентификационное название ПО и номер версии. Копия экрана приведена на рисунке 1.

Рисунок1 - Окно с идентификационными данными ПО

6.2.1.2. Спектрометр считается выдержавшим проверку, если версия ПО не ниже 1.2. Версия может содержать дополнительные цифровые или буквенные суффиксы после 1.2.

6.3. Опробование.

6.3.1. Загрузить приложение "Validation" (Валидация), с помощью которого можно провести инструментальные тесты на соответствие характеристик прибора предельно допускаемым. После инициализации прибора (1-2 минуты), прогреть его в течении одного часа. Нажать кнопку *Tests (Tecmы)* и выбрать *Installation tests (Tecmы ввода в эксплуатацию)* и запустить их на выполнение. Если тесты точности установки длины волны какого-либо монохроматора превышают допустимые отклонения, необходимо провести повторную калибровку по длинам волн и напряжению питания ФЭУ (см. Руководство пользователя).

3

6.4. Определение метрологических характеристик

6.4.1.Определение погрешности установки длин волн

6.4.1.1. Определение проводится путем реализации теста, выполняемого в меню «Installation Test», пункты «Wavelength Accuracy Ex (Xe)» (Погрешность установки длин волн монохроматора возбуждения) и «Wavelength Accuracy Em (Xe)» (Погрешность установки длин волн монохроматора регистрации). Окно программы показано на рисунке 1.

По окончанию теста результаты будут представлены в отчете, формируемом программой (Eclipse Validation Report).

6.4.1.2. Используя результаты теста, полученные в п. 6.4.1.1 вычислить погрешность установки длин волн (Δ) по формуле:

$$\Delta = \lambda_{\mu} - \lambda_{\mu}$$

где: λ_{d} - действительное (табличное) значение длины волны эмиссионной линии ксенона, излучаемой источником света спектрометра (указана в отчете прибора - Eclipse Validation Report);

 λ_{μ} - длина волны максимума линии, зарегистрированная спектрометром (указана в отчете прибора - Eclipse Validation Report).

6.4.1.3. Спектометр считается прошедшим проверку по п.6.4.1, если погрешность установки длин волн для обоих монохроматоров не превышает ±1,5 нм.

6.4.2. Определение отношения сигнал/шум.

6.4.2.1. Определение отношения сигнал/шум проводится по Рамановскому рассеянию света воды на двух длинах волн возбуждения 350 нм и 500 нм.

6.4.2.2. Установить в спектрометр кювету с водой для лабораторного анализа высокой степени очистки по ГОСТ Р 52501-2005.

6.4.2.3. Определение отношения сигнал/шум проводится путем реализации теста, выполняемого программой «Installation Test» по Рамановскому рассеянию света на дистиллированной воде на двух длинах волн возбуждения 350 нм и 500 нм.

6.4.2.4. Запустить программу «Installation Test», пункты *Raman water Sensitivity Ex. 350 nm* и *Raman water Sensitivity Ex. 500 nm*. Окно программы показано на рисунке 1.

6.4.2.5. По окончанию теста результаты буду представлены в отчете, формируемом программой.

Configure Wavelength Accuracy (Xe)	Spectral Bandwidth Accuracy Sensitivity Stray Lig	
Enable Test Suite	Test Order Wavelength Accuracy Ex Mono (Xe) Spectral Bandwidth Accuracy Ex SR Stray Light Raman water Sensitivity Ex 350 nm Raman water Sensitivity Ex 350 nm	¢
V Show Status Display	X Deselect al lesis C Beset default values	

4

(1)

Рисунок 1 – Окно программы Installation Test

6.4.2.6 Спектрометр считается выдержавшим проверку по п.6.4.2, если полученные в отчете значения отношения сигнал/шум для длины волны возбуждения 350 нм не менее 700:1, а для 500 нм не менее 500:1.

6.4.3. Определение относительного СКО выходного сигнала.

6.4.3.1 Для определения относительного СКО выходного сигнала используются результаты измерения интенсивности линии комбинационного рассеяния воды на линии с максимумом 400 нм. Измерения проводятся с помощью меню *Scan (Измерение с расширенными возможно-стями* (І_{ср}, усл. ед.) ПО спектрометра.

6.4.3.2. Измерения проводятся при следующих условиях (исходных параметрах):

Тип измерения	- Флюоресценция;
Длина волны возбуждения	- 350 нм;
Длина волны эмиссии	- 400 нм;
Ширина щели монохроматора возбуждения	- 10 нм;
Ширина щели монохроматора эмиссии	-10 нм;
Фильтр монохроматора возбуждения	- Авто;
Фильтр монохроматора эмиссии	- Открыт;
Время усреднения	- 5 секунд;
Высокое напряжение на детекторе	- 600 B

На рисунке 1 приведено окно задания исходных параметров для определения относительного СКО выходного сигнала.

nstrum	Data mode	Fluorescen	
50		1	
Boan s	etup		
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Excitation	n Emission Synchronous Wavelength (nm)	
	X Mode		
	Emission (nm)	400.00	Zero order
	Start (nm)	350.00	Excitation slit (nm)
	Stop (nm)	450.00	Emission slit (nm)
- 3-D	Mode		
	Em Stop (nm)	450.00	Em Increment (nm) 10.00
Sc <u>a</u> n c	ontrol	A STREET	
	Slowest Slow	え Medium_F	국 국 국 ast Fastest Survey Manual
	Scan rate (nm/min) 600.000	
	Averaging time (s)	0.1000	Data interval (nm) 1.0000

Рисунок 1 - Окно задания исходных параметров

Провести 10 измерений интенсивности флуоресценции. СКО вычисляется по формуле:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (I_{cp} - I_{i})^{2}}{n-1}}$$
(2)

где I_i - результат i-го измерения интенсивности флуоресценции;

Іср – среднее значений измерений интенсивности флуоресценции;

n – количество проведенных измерений.

или с помощью электронных таблиц EXCEL.

Относительное СКО, выраженное в процентах, вычисляется по формуле:

$$S_r = (S/I_{cp}) \times 100, \%$$
 (3)

Спектрометр считается выдержавшим проверку по п.6.4.3, если полученное значение S_r не превышает 3,0 %.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

7.1. Данные, полученные при поверке, оформляются в произвольной форме.

7.2. Спектрометр, удовлетворяющий требованиям настоящей методики поверки, признается годными и на него оформляется свидетельство о поверке по установленной форме.

На оборотной стороне свидетельства приводится следующая информация:

-результаты опробования и внешнего осмотра;

-результат проверки соответствия ПО;

- результаты определения метрологических характеристик;

7.3. Спектрометры, не удовлетворяющие требованиям настоящей методики, к дальнейшей эксплуатации не допускается и на них выдается извещение о непригодности.

7.4. Знак поверки наносится на лицевую панель спектрометра и (или) на свидетельство о поверке.

6