ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ВОЛЬТАМПЕРФАЗОМЕТРЫ МІ 2230

Методика поверки

ВВЕДЕНИЕ

Настоящая методика предусматривает методы и средства проведения первичной и периодической поверок вольтамперфазометров MI 2230, изготавливаемых фирмой «METREL d.d.», Словения.

Вольтамперфазометры MI 2230 предназначены для измерений:

- напряжения постоянного и переменного тока;
- силы переменного тока;
- частоты переменного тока;
- сопротивления постоянному току;
- угла сдвига фаз;
- активной, реактивной, полной мощностей;
- коэффициента мощности;
- суммарного коэффициента нелинейных искажений напряжения и тока (THD).

Приборы также определяют последовательность чередования фаз в трехфазных электрических сетях.

Интервал между поверками (межповерочный интервал) – 2 года.

Погрешности вычисляемых величин определению не подлежат.

Допускается проведение первичной поверки приборов при выпуске из производства до ввода в эксплуатацию на основании выборки по ГОСТ Р ИСО 2859-10-2008.

Периодическая поверка средств измерений в случае их использования для измерений меньшего числа величин или на меньшем числе поддиапазонов измерений, по отношению к указанным в разделе «Метрологические и технические характеристики» Описания типа, допускается на основании письменного заявления владельца приборов, оформленного в произвольной форме. Соответствующая запись должна быть сделана в свидетельстве о поверке приборов.

1 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

- 1.1 При поверке выполняются операции, указанные в таблице 1.
- 1.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

Таблица 1 – Операции поверки

	Номер	Проведение операции п	
Наименование операции	пункта	первичной	периодической
Паименование операции	методики	поверке	поверке
	поверки		
1. Внешний осмотр	7.3	Да	Да
2. Проверка сопротивления изоляции	7.4	Да	Да
3. Опробование	7.5	Да	Да
4. Определение пределов допускаемой			
абсолютной погрешности измерений	7.6	По	По
напряжения постоянного и переменного	7.0	Да	Да
тока			
5. Определение пределов допускаемой			
абсолютной погрешности измерений	7.7	Да	Да
силы переменного тока			
6. Определение пределов допускаемой			
абсолютной погрешности измерений	7.8	Да	Да
сопротивления постоянному току	7.0	да	Да

	Номер	Проведение операции при	
Наименование операции	пункта методики поверки	первичной поверке	периодической поверке
7. Определение пределов допускаемой абсолютной погрешности измерений частоты переменного тока	7.9	Да	Да
8. Определение пределов допускаемой абсолютной погрешности измерений угла сдвига фаз	7.10	Да	Да

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства измерений, перечисленные в таблицах 2 и 3.
- 2.2 Допускается применять другие средства измерений, обеспечивающие измерение значений соответствующих величин с требуемой точностью.
- 2.3. Все средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке.

Таблица 2 –	Эталонные средства поверки
Номер	
пункта	Тип средства поверки
методики	тип средства поверки
поверки	
7.3; 7.5	Визуально
7.4	Мегаомметр М4100/3. Выходное напряжение 500 В. Диапазон измерений
	сопротивления изоляции от 0 до 100 МОм. Кл. т. 1,0.
7.6	Калибратор универсальный Fluke 9100. Диапазон воспроизведения напряжения постоянного тока от 0 до 1050 В. Пределы допускаемой погрешности $\pm 0,004$ %.
	Диапазон воспроизведения напряжения переменного тока от 0 до 1050 В. Пределы допускаемой относительной погрешности ±0,025 %.
7.7	Калибратор универсальный Fluke 9100. Диапазон воспроизведения силы переменного тока от 0 до 20 A (до 1000 A с токовой катушкой). Пределы допускаемой относительной погрешности ± 0.2 %.
	Трансформатор тока измерительный лабораторный ТТИ-5000.5. Номинальные значения первичного тока от 5 до 5000 А. Номинальный вторичный ток 5 А. Класс
	точности 0,05. Амперметр Д5017. Диапазон измерений от 0,1 до 20 А. Класс точности 0,2. Регулируемый источник тока РИТ-5000. Диапазон выходного тока от 0 до 5000 А.
7.8	Калибратор универсальный Fluke 9100. Диапазон воспроизведение электрического сопротивления от 0 до 400 МОм. Пределы допускаемой относительной погрешности ± 0.02 %.
7.9; 7.10	Установка поверочная универсальная УППУ-МЭ 3.1К в составе: источник испытательных сигналов (ИИС) и прибор электроизмерительный эталонный многофункциональный «Энергомонитор-3.1КМ». Параметры источника испытательных сигналов (ИИС): номинальные токи 0,5; 2,
	10, 50, 100 А. Номинальное напряжение 60, 220, 480 В.
	Частота первой гармоники от 45 до 70 Гц. Угол фазового сдвига от 0 до 360 градусов.
	Параметры прибора электроизмерительного эталонного многофункционального «Энергомонитор-3.1КМ»: пределы измерений силы переменного тока от 0,05 до 100 А. Класс точности 0,02/0,01. Диапазон измерений напряжения переменного

Номер пункта методики поверки	Тип средства поверки
•	тока от 6 до 576 В. Класс точности 0,02/0,01. Диапазон измерений частоты переменного тока от 40 до 70 Гц. Пределы
	допускаемой абсолютной погрешности $\pm 0,003$ Гц. Диапазон измерений угла фазового сдвига от 0 до 360 градусов. Пределы допускаемой абсолютной погрешности $\pm 0,03$ градуса

Таблица 3 – Вспомогательные средства поверки

Измеряемая	Диапазон	Класс точности,	Тип средства поверки
величина	измерений	погрешность	
Температура	от 0 до 50 °C	±1 °C	Термометр ртутный стеклянный лабораторный ТЛ-4
Давление	от 80 до 106 кПа	±200 Па	Барометр-анероид метеорологический БАММ-1
Влажность	от 10 до 100 %	±1 %	Психрометр аспирационный М-34-М

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются поверители из числа сотрудников организаций, аккредитованных на право проведения поверки в соответствии с действующим законодательством $P\Phi$, изучившие настоящую методику поверки, руководство по эксплуатации на поверяемое средство измерений и имеющие стаж работы по данному виду измерений не менее 1 года.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

К проведению поверки допускаются лица, изучившие руководство по эксплуатации прибора и прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок напряжением до 1 кВ.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха (20±5) °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа или от 630 до 795 мм. рт. ст.;
- напряжение питания переменного тока (220,0±2,2) В;
- частота (50,0±0,5) Гц.

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед поверкой должны быть выполнены следующие подготовительные работы:

- 1. Проверены документы, подтверждающие электрическую безопасность.
- 2. Проведены технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75.
- 3. Средства измерения, используемые при поверке, поверены и подготовлены к работе согласно их руководствам по эксплуатации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Метрологические характеристики, подлежащие определению

Таблица 4 – Метрологические характеристики вольтамперфазометров MI 2230 в режиме

измерений напряжения постоянного и переменного тока

Диапазон измерений	Частота	Разрешение (е.м.р.)	Пределы допускаемой абсолютной погрешности измерений
от 10,0 до 600,0 В	постоянный ток от 45 до 66 Гц	0,1 B	±(0,005·Uизм.+3 е.м.р.)
Примечание – Uизм. – из	змеренное значени	е напряжения, 1	B

Таблица 5 – Метрологические характеристики вольтамперфазометров MI 2230 в режиме

измерений силы переменного тока

Тип токовых	Диапазон измерений	Разрешение	Пределы допускаемой абсолютной	
клещей		(е.м.р.)	погрешности измерений	
	от 50,0 до 99,9 мА	0,1 мА	±(0,05·Іизм.+2 е.м.р.)	
A 1200	от 100,0 до 999,9 мА	0,1 мА		
A 1398	от 1,000 до 9,999 А	1 мА	±(0,015·Іизм.+2 е.м.р.)	
	от 10,00 до 19,99 А	10 мА		
	от 3,0 до 29,9 А			
A 1205	от 30,0 до 299,9 А	0,1 A	1 (0 02 I 12)	
A 1395	от 300,0 до 999,9 А		±(0,03·Іизм.+2 е.м.р.)	
	от 1000 до 6000 А	1 A		
Примечание – І	изм. – измеренное значени	е силы тока, мА.	, A	

Таблица 6 – Метрологические характеристики вольтамперфазометров MI 2230 в режиме

измерений частоты переменного тока

Диапазон измерений	Разрешение	Пределы допускаемой абсолютной
	(е.м.р.)	погрешности измерений
от 45,00 до 65,00 Гц	0,01 Гц	±0,02 Гц
Примечание: частота измеряется по каналу напряжения L1 или каналу тока I1		

Таблица 7 - Метрологические характеристики вольтамперфазометров МІ 2230 в режиме

измерений сопротивления постоянному току (измерительный ток 200 мА)

Диапазон измерений	Разрешение	Пределы допускаемой абсолютной
-	(е.м.р.)	погрешности измерений
от 0,00 до 19,99 Ом	0,01 Ом	±(0,03·Rизм.+3 е.м.р.)
от 20,0 до 199,9 Ом	0,1 Ом	10.05 Press
от 200 до 1999 Ом	1 Ом	±0,05·Rизм.
Примечание – Кизм. – изм	еренное значение	сопротивления, Ом

Таблица 8 - Метрологические характеристики вольтамперфазометров МІ 2230 в режиме

измерений сопротивления постоянному току (измерительный ток 7 мА)

Диапазон измерений	Разрешение	Пределы допускаемой абсолютной	
	(е.м.р.)	погрешности измерений	
от 0,0 до 19,9 Ом	0,1 Ом	1(0.05 Press 12.035 m)	
от 20 до 1999 Ом	1 Ом	±(0,05·Rизм.+3 е.м.р.)	
Примечание – Кизм. – изм	еренное значение	сопротивления, Ом	

Таблица 9 – Метрологические характеристики вольтамперфазометров MI 2230 в режиме

измерений угла сдвига фаз

Диапазон измерений	Разрешение (е.м.р.)	Пределы допускаемой абсолютной погрешности измерений
от -180,0 до +180,0 градусов	0,1 градуса	±0,5 градуса

7.2 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие средства измерений следующим требованиям:

- 1. Комплектность и маркировка должны соответствовать руководству по эксплуатации.
- 2. Все органы управления и коммутации должны действовать плавно и обеспечивать надежность фиксации во всех позициях.
- 3. Не должно быть механических повреждений корпуса, лицевой панели, дисплея, органов управления. Незакрепленные или отсоединенные части должны отсутствовать. Внутри корпуса не должно быть посторонних предметов. Все надписи на панелях должны быть четкими и ясными.
- 4. Все разъемы, клеммы и измерительные провода не должны иметь повреждений и должны быть чистыми.

При наличии дефектов поверяемый прибор бракуется и направляется в ремонт.

7.3 Опробование

При опробовании выполняются следующие операции:

- проверяется работа индикации прибора и прохождение всех стартовых тестов;
- устанавливают на приборе текущие дату и время.

Результат поверки считается положительным, если все вышеперечисленные операции прошли успешно. Если это условие не выполняется, то прибор бракуется и направляется в ремонт.

Подтверждение соответствия программного обеспечения.

Подтверждение соответствия программного обеспечения производить в следующем порядке:

- 5. Включить прибор.
- 6. Зафиксировать версию встроенного ПО, установленного в приборе, отображаемую в стартовом экране внизу. Она должна быть не ниже указанной в таблице 10.

При невыполнении этих требований поверка прекращается и прибор бракуется.

Таблица 10 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	_
Номер версии (идентификационный номер ПО)	Не ниже 1.193
Цифровой идентификатор ПО	_

7.4 Проверка сопротивления изоляции

Сопротивление изоляции определять при испытательном напряжении 500 В.

Корпус прибора поместить в заземленную металлическую фольгу. Батареи питания при испытании должны быть извлечены из прибора.

Результаты поверки считаются удовлетворительными, если сопротивление изоляции между измерительными входами и корпусом прибора составляет не менее 20 МОм.

При пониженном сопротивлении изоляции прибор бракуется и направляется в ремонт.

7.5 Определение пределов допускаемой абсолютной погрешности измерений напряжения постоянного и переменного тока

Определение пределов допускаемой абсолютной погрешности измерений напряжения постоянного и переменного тока проводить методом прямого измерения поверяемым прибором напряжения, воспроизводимого эталонной мерой – калибратором Fluke 9100.

Определение погрешности проводить в следующем порядке:

- 1. Подключить к входам поверяемого прибора калибратор универсальный Fluke 9100 в соответствии со схемами, приведенными в РЭ прибора. Схема подключения 2-х фазная.
- 2. Перевести калибратор универсальный Fluke 9100 в режим воспроизведения напряжения переменного тока частотой 50 Гц.
- 3. Перевести поверяемый прибор в режим измерений «U,I,f».
- 4. Провести измерения в точках, указанных в таблице 11.
- 5. Перевести калибратор в режим воспроизведения напряжения постоянного тока.
- 6. Провести измерения в точках, указанных в таблице 11.
- 7. Результаты поверки прибора считаются удовлетворительными, если во всех поверяемых точках погрешность измерений, определенная по формуле:

$$\Delta U = U_X - U_0 \tag{1}$$

где:

U_X – показания поверяемого прибора, В;

 U_0 – показания калибратора, B;

не превышают значений, указанных в п. 7.1.

Таблица 11

Напряжение	Напряжение	
канала 1 (U1), В	канала 2 (U2), В	
11	11	
57	57	
100	100	
220	220	
500	500	

7.6 Определение пределов допускаемой абсолютной погрешности измерений силы переменного тока

Определение пределов допускаемой абсолютной погрешности измерений силы переменного тока для токовых клещей с диапазоном измерений до 1000 А проводить методом прямого измерения поверяемым прибором силы тока, воспроизводимой эталонной мерой – калибратором Fluke 9100 с 10 и 50 витковой токовой катушкой.

Определение погрешности проводить в следующем порядке:

- 1. Подключить к входу поверяемого прибора токовые клещи.
- 2. Подключить клещи к калибратору Fluke 9100.
- 3. Перевести калибратор в режим воспроизведения силы переменного тока частотой 50 Гц.
- 4. Перевести поверяемый прибор в режим измерения «U,I,f».
- 5. Провести измерения в точках, указанных в таблице 12 (для клещей модели А1395) и таблице 13 (для клещей модели А1398).
- 6. Результаты поверки прибора считаются удовлетворительными, если во всех поверяемых точках погрешность измерений, определенная по формуле:

$$\Delta I = I_X - I_0 \tag{2}$$

где: I_X – показания поверяемого прибора, A;

 I_0 – показания калибратора, A;

не превышают значений, указанных в п. 7.1.

Таблица 12 – Поверяемые отметки для клещей типа А1395

Сила тока	Сила тока	
канала 1 (I1), A	канала 2 (I2), A	
50	50	
100	100	
300	300	
600	600	
750	750	

Таблица 13 – Поверяемые отметки для клещей типа А1398

Сила тока	Сила тока	
канала 1 (I1), A	канала 2 (I2), A	
0,050	0,050	
0,5	0,5	
5	5	
12,5	12,5	

Определение пределов допускаемой абсолютной погрешности измерений силы переменного тока для токовых клещей с диапазоном измерений свыше 1000 А проводить методом непосредственного сличения с показаниями эталонного прибора — прибора электроизмерительного эталонного многофункционального «Энергомонитор-3.1КМ», включенного через трансформатор тока ТТИ-5000.5. В качестве источника тока использовать регулируемый источник тока РИТ-5000.

Определение погрешности проводить в следующем порядке:

- 1. Подключить к входу поверяемого прибора токовые клещи.
- 2. Питающий кабель из комплекта источника РИТ-5000 пропустить через центральное отверстие трансформатора тока ТТИ-5000.5 (число витков согласно указаниям на табличке трансформатора). К вторичной обмотке трансформатора подключить прибор «Энергомонитор-3.1КМ», предел измерений 5 А.
- 3. Охватить токовыми клещами из комплекта прибора питающий кабель из комплекта источника РИТ-5000.
- 4. Перевести поверяемый прибор в режим измерения «U,I,f».
- 5. Провести измерения в точках, указанных в таблице 14 (для клещей модели А1395).
- 6. Рассчитать погрешности измерений в соответствии с формулой (2). За показания эталонного прибора принимается значение, определенное по формуле:

$$X_0 = I_A \times K; \tag{3}$$

где: I_A – величина силы тока, измеренная прибором «Энергомонитор-3.1КМ», A; K – коэффициент трансформации трансформатора ТТИ-5000.5.

7. Результаты поверки прибора считается удовлетворительным, если во всех поверяемых точках погрешность измерений не превышают значений, указанных в п. 7.1.

Таблица 14 – Поверяемые отметки для клещей типа А1395

Сила тока	Сила тока		
канала 1 (I1), А	канала 2 (I2), A		
1000	1000		
1500	1500		
3000	3000		

7.7 Определение пределов допускаемой абсолютной погрешности измерений сопротивления постоянному току

Определение пределов допускаемой абсолютной погрешности измерений сопротивления постоянного тока проводить методом прямого измерения поверяемым прибором электрического сопротивления, воспроизводимой эталонной мерой — калибратором Fluke 9100.

Определение погрешности производить в следующем порядке:

- 1. Подключить к входам поверяемого прибора калибратор Fluke 9100 в соответствии со схемами, приведенными в РЭ прибора.
- 2. Перевести калибратор в режим воспроизведения сопротивления постоянного тока.
- 3. Перевести поверяемый прибор в режим измерений «R 200 mA».
- 4. Провести измерения в точках, указанных в таблице 15.
- 5. Перевести поверяемый прибор в режим измерений «R 7 mA».
- 6. Провести измерения в точках, указанных в таблице 16.
- 7. Результаты поверки прибора считаются удовлетворительными, если во всех поверяемых точках погрешность измерений, определенная по формуле:

$$\Delta R = R_X - R_0 \tag{4}$$

где: R_X – показания поверяемого прибора, Ом;

 R_0 – показания калибратора, Ом;

не превышают значений, указанных в п. 7.1.

Таблица 15

Режим измерений	Значение сопротивления, Ом	
«R 200 mA»	1	
	19	
	190	
	1900	

Таблица 16

Режим измерений	Значение сопротивления, Ом		
«R 7 mA»	1		
	19		
	190		
	1900		

7.8 Определение пределов допускаемой абсолютной погрешности измерений частоты переменного тока

Определение пределов допускаемой абсолютной погрешности измерений частоты проводить методом прямого измерения поверяемым прибором частоты, воспроизводимой эталонной мерой – установкой поверочной универсальной УППУ-МЭ 3.1К.

Определение погрешности проводить в следующем порядке:

- 1. Подключить к входам поверяемого установку УППУ-МЭ 3.1К в соответствии со схемами, приведенными в РЭ прибора. Схема подключения 2-х фазная.
- 2. Перевести установку в режим воспроизведения напряжения и силы переменного тока частотой 50 Гц. Угол сдвига фаз между напряжением и током 0 градусов.
- 3. Перевести поверяемый прибор в режим измерения «U,I,f».
- 4. Провести измерения в точках, указанных в таблице 17.
- 5. Результаты поверки прибора считаются удовлетворительными, если во всех поверяемых точках погрешность измерений, определенная по формуле:

$$\Delta F = F_X - F_0 \tag{5}$$

где: F_X – показания поверяемого прибора, Γ ц;

 F_0 – показания установки, Γ ц; не превышают значений, указанных в п. 7.1.

Таблица 17

Частота, Гц	Напряжение	Напряжение канала 2 (U2), В	Сила тока	Сила тока
50	57	57	0	0
60	0	0	100	100

7.9 Определение пределов допускаемой абсолютной погрешности измерений угла сдвига фаз

Определение пределов допускаемой абсолютной погрешности измерений угла сдвига фаз проводить методом прямого измерения поверяемым прибором угла сдвига фаз, воспроизводимой эталонной мерой – установкой поверочной универсальной УППУ-МЭ 3.1К.

Определение погрешности проводить в следующем порядке:

- 1. Подключить к входам поверяемого прибора установку УППУ-МЭ 3.1К в соответствии со схемами, приведенными в РЭ прибора. Схема подключения 2-х фазная.
- 2. Перевести установку в режим воспроизведения напряжения и силы переменного тока частотой 50 Гц. Угол сдвига фаз между напряжением и током 0 градусов.
- 3. Перевести поверяемый прибор в режим измерения «U,I,f».
- 4. Провести измерения в точках, указанных в таблице 18.
- 5. Результаты поверки прибора считаются удовлетворительными, если во всех поверяемых точках погрешность измерений, определенная по формуле:

$$\Delta \varphi = \varphi_{X} - \varphi_{0} \tag{6}$$

где: ϕ_X – показания поверяемого прибора, градусов;

 ϕ_0 – показания установки, градусов;

не превышают значений, указанных в п. 7.1.

Таблица 18

Угол сдвига фаз между		Напряжение	Сила тока	Сила тока
напряжением и током,	канала 1 (U1), В	канала 2 (U2), В	канала 1 (I1), А	канала 2 (I2), A
градусов				
0	220	220	10	10
60	220	220	10	10
120	220	220	10	10
180	220	220	10	10
-120	220	220	10	10
- 60	220	220	10	10

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

При положительных результатах первичной поверки на корпус прибора наносится знак поверки, в паспорте прибора производится запись о годности к применению и (или) выдается свидетельство о поверке.

При отрицательных результатах поверки прибор не допускается к дальнейшему применению, знак предыдущей поверки гасится, свидетельство о поверке аннулируется и выдается извещение о непригодности.

Главный инженер OOO «ИЦРМ»

€ Уеписту — Е.С. Устинова