ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии» Государственный научный метрологический центр ФГУП «ВНИИР»

УТВЕРЖДАЮ

Заместитель директора по

развитию

С. Тайбинский

26 » июня 2017 г.

ИНСТРУКЦИЯ

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Резервуары стальные вертикальные цилиндрические казематные, с защитной стенкой РВС-1000, РВС-3000

МЕТОДИКА ПОВЕРКИ

МП 0608-7-2017

Начальник НИО-7

Кондаков А.В.

Тел (843) 272-62-75; 272-54-55

Предисловие

1 РАЗРАБОТАНА Федеральным государственным унитарным предприятием

Всероссийским научно-исследовательским институтом расходометрии

Государственным научным метрологическим центром

(ФГУП «ВНИИР»)

ИСПОЛНИТЕЛИ: А.В Кондаков, В. М. Мигранов

2 УТВЕРЖДЕНА ФГУП «ВНИИР» 26 июня 2017 г.

3 ВВЕДЕНА ВПЕРВЫЕ

ЛИСТОВ: 38

Настоящий нормативный документ не может быть полностью или частично воспроизведен, тиражирован и (или) распространен без разрешения ФГУП «ВНИИР»

Адрес: 420088, г. Казань, ул. 2-я Азинская, 7а Тел/факс +7(843)272-61-26; +7(843)272-62-75

E-mail: nio7@vniir.org

Содержание

	Crp.
1 Область применения	1
2 Нормативные ссылки	
3 Термины и определения	2
4 Метод поверки	3
5 Технические требования	
5.1 Требования к погрешности измерений параметров резервуара	3
5.2 Требования по применению рабочих эталонов и вспомогательных средств пог	зерки3
5 Требования к организации проведения поверки	4
6 Требования к квалификации поверителей и требования безопасности	4
7 Условия поверки	
8 Подготовка к поверке	5
9 Проведение поверки резервуара	
9.1 Измерения длины окружности первого пояса	
9.2 Измерения радиальных отклонений образующих резервуара от вертикали	
9.3 Измерения плотности жидкости	
9.4 Измерения уровня жидкости	
9.5 Измерения высоты поясов и толщины стенок	9
9.6 Определение объемов внутренних деталей	
9.7 Измерения вместимости «мертвой» полости	10
9.8 Измерения координаты точки отсчета значений уровня жидкости или базовой	высоты
	11
9.9 Измерения базовой высоты резервуара	11
10 Обработка результатов измерений и составление градуировочной таблицы	12
10.1 Обработка результатов измерений	12
10.2 Составление градуировочной таблицы резервуара	12
11 Оформление результатов поверки	13
Приложение А	
Приложение Б	21
ПРИЛОЖЕНИЕ В	26
Приложение Г	27
приложение д	
ПРИЛОЖЕНИЕ Е (обязательное)	33
БИБ ПИОГРАФИЯ	35

Государственная система обеспечения единства измерений

Резервуары стальные вертикальные цилиндрические казематные, с защитной стенкой PBC-1000, PBC-3000.
Методика поверки
МП 0608-7-2017

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая инструкция распространяется на резервуары стальные вертикальные цилиндрические казематные и на резервуары стальные вертикальные цилиндрические с защитной стенкой (далее – резервуар) номинальной вместимостью 1000 м³, 3000 м³ (РВС-1000, РВС-3000) АО «ННК-Камчатнефтепродукт», предназначенных для измерения объема нефтепродуктов, а также для их приема, хранения и отпуска при выполнении государственных учетных операций с нефтепродуктами и устанавливает методику геометрическим методом его первичной, периодической и внеочередной поверок.

Межповерочный интервал составляет не более 5 лет.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей инструкции использованы ссылки на следующие стандарты:

ГОСТ 12.0.004-2015 Система стандартов безопасности труда. Организация обучения безопасности труда. Общие положения;

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарногигиенические требования к воздуху рабочей зоны;

ГОСТ 12.4.010-75 Система стандартов безопасности труда. Средства индивидуальной защиты. Рукавицы специальные. Технические условия;

ГОСТ 12.4.087-84 Система стандартов безопасности труда. Строительство. Каски строительные. Технические условия;

ГОСТ 12.4.137-2001 Обувь специальная с верхом из кожи для защиты от нефти, нефтепродуктов, кислот, щелочей, нетоксичной и взрывоопасной пыли. Технические условия;

ГОСТ 400-80 Термометры стеклянные для испытаний нефтепродуктов. Технические условия;

ГОСТ 427-75 Линейки измерительные металлические. Технические условия;

ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия;

ГОСТ 10528-90 Нивелиры. Общие технические условия;

ГОСТ 166-89 (ИСО 3599-76). Штангенциркули. Технические условия;

ГОСТ 10529-96 Теодолиты. Общие технические условия;

ГОСТ 3900-85 Нефть и нефтепродукты. Методы определения плотности;

ГОСТ 2517-2012 Нефть и нефтепродукты. Методы отбора проб;

ГОСТ Р 12.4.290—2013 Система стандартов безопасности труда. Одежда специальная для защиты работающих от воздействия нефти, нефтепродуктов. Технические требования;

ГОСТ 28498-90 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В настоящей инструкции применяют следующие термины с соответствующими определениями:

- 3.1 резервуар стальной вертикальный цилиндрический казематный: Стальной сосуд, включающий в себя внутренний резервуар, состоящий из цилиндрической стенки, стационарной кровли и наружной бетонной стенки.
- 3.2 градуировочная таблица: Зависимость вместимости от уровня наполнения резервуара при нормированном значении температуры, равной 20 °С.

Таблицу прилагают к свидетельству о поверке резервуара и применяют для определения объема нефтепродукта в нем.

- 3.3 градуировка: Операция поверки по установлению зависимости вместимости резервуара от уровня его наполнения, с целью составления градуировочной таблицы.
- 3.4 **вместительность резервуара:** Внутренний объем резервуара с учетом объема внутренних деталей, который может быть наполнен нефтепродуктом до определенного уровня.
- 3.5 **номинальная вместимость резервуара:** Вместимость резервуара, соответствующая предельному уровню наполнения его, установленная нормативным документом для конкретного типа резервуара.
- 3.6 действительная (фактическая) полная вместимость резервуара: Вместимость резервуара, соответствующая предельному уровню его наполнения, установленная при его поверке.
- 3.7 **посантиметровая вместимость резервуара:** Вместимость резервуара, соответствующая уровню налитых в него доз жидкости, приходящихся на 1 см высоты наполнения.
- 3.8 **коэффициент вместимости:** Вместимость, приходящаяся на 1 мм высоты наполнения.
- 3.9 **точка касания днища грузом рулетки:** Точка на днище резервуара, которой касается груз измерительной рулетки при измерении базовой высоты резервуара и уровня нефтепродукта в резервуаре.
- 3.10 **базовая высота резервуара:** Расстояние по вертикале от точки касания днища грузом рулетки до верхнего края измерительного люка или до риски направляющей планки измерительного люка (при наличии)
- 3.11 **предельный уровень:** Предельный уровень определения посантиметровой вместимости резервуара при его поверке, соответствующий суммарной высоте нижней части резервуара и стенки резервуара
- 3.12 геометрический метод поверки: Метод поверки, заключающийся в определении вместимости резервуара по результатам измерений его геометрических параметров.

4 МЕТОД ПОВЕРКИ

- 4.1 Поверку резервуара проводят геометрическим методом.
- 4.1.1 При геометрическом методе поверки резервуара вместимость первого пояса определяют по результатам измерений длины наружной окружности, толщины стенки и высоты первого пояса.
- 4.1.2 Вместимости вышестоящих поясов определяют по результатам измерений радиальных отклонений образующих от вертикали, толщин стенок и их высот.

5 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

5.1 Требования к погрешности измерений параметров резервуара

5.1.1 Пределы допускаемой погрешности измерений параметров резервуара приведены в таблице 1.

Таблица 1

Наименование параметра	Пределы допускаемой погрешности измерений параметров резервуаров
Длина окружности первого пояса, %	± 0,022
Высота пояса, мм	± 5
Расстояние от стенки резервуара до нити	± 1
отвеса, мм	
Толщина стенок (включая слой покраски),	± 0,2
мм	
Объем внутренних деталей, м ³	± (0,005 - 0,025)

5.1.2 При соблюдении указанных в таблице 1 пределов допускаемой погрешности измерений относительная погрешность определения вместимости (градуировочной таблицы) резервуаров не превышает: $\pm 0.20\%$.

5.2 Требования по применению рабочих эталонов и вспомогательных средств поверки

- 5.2.1 При поверке резервуара применяют следующие основные и вспомогательные средства поверки:
- 5.2.1.1 Рулетку измерительную 2-го класса точности с диапазоном измерений от 0 до 20 м по ГОСТ 7502.
- 5.2.1.2 Рулетку измерительную 2-го класса точности с грузом диапазоном измерений от 0 до 30 м по ГОСТ 7502.
- 5.2.1.3 Линейку измерительную металлическую с диапазоном от 0 до 500 мм, от 0 до 1000 мм по ГОСТ 427.
- 5.2.1.4 Толщиномер ультразвуковой с диапазоном измерений 0,6 30 мм и пределами допускаемой погрешности \pm 0,1 мм по [1].
- 5.2.1.5 Термометр с ценой деления $0,1^{\circ}$ С и диапазоном измерений от 0 до плюс 50 °C по Γ OCT 28498.
 - 5.2.1.6 Анализатор-течеискатель типа АНТ-3М по [2].
 - 5.2.1.7 Нивелир с рейкой по ГОСТ 10528.

ФГУП «ВНИИР» Страница 3 из 35

- 5.2.1.8 Штангенциркуль с диапазонами измерений: от 0 до 125 мм; от 0 до 150 мм; от 150 до 500 мм; от 500 до 1600 мм (черт. 3) по Γ OCT_166.
- 5.2.1.9 Теодолит оптический с ценой деления микроскопа 2 (угловые секунды) по ГОСТ 10529
 - 5.2.1.10 Скоба (рисунок А.2).
 - **5.2.1.11** Магнитный держатель (рисунок <u>A.3</u>).
 - 5.2.1.12 Отвес с грузом каретки (рисунок A.3).
 - 5.2.1.13 Каретка измерительная (рисунок A.4 или рисунок A.5).
 - 5.2.1.14 Приспособление для подвески каретки (рисунок А.3).
 - 5.2.1.15 Упорный угольник 90°.
- 5.2.2 Вспомогательные средства поверки: мел, шпатель, щетки (металлические), микрокалькулятор.
 - 5.2.3 Рабочие эталоны должны быть аттестованы.
- 4.2.4 Допускается применение других, вновь разработанных или находящихся в эксплуатации средств измерений, удовлетворяющих по точности и пределам измерений требованиям настоящей методики.

5 ТРЕБОВАНИЯ К ОРГАНИЗАЦИИ ПРОВЕДЕНИЯ ПОВЕРКИ

- 5.1 Поверку резервуаров осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица.
 - 5.2 Устанавливают следующие виды поверок резервуара:
- первичную, которую проводят после строительства резервуара перед его вводом в эксплуатацию и капитального ремонта;
- периодическую, которую проводят по истечению срока действия градуировочной таблицы и при внесении в резервуар конструктивных изменений, влияющих на его вместимость;
- внеочередную поверку проводят при изменении значений базовой высоты резервуара более чем на 0,1 % по результатам ежегодных её измерений.

Первичную поверку резервуаров проводят после их гидравлических испытаний.

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ И ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 Поверку резервуара проводит физическое лицо, аттестованное в качестве поверителя и в области промышленной безопасности в соответствии с РД-03-20 [3], утвержденным приказом Ростехнадзора от 29.01.2007 № 37.
- 6.2 Измерения параметров при поверке резервуара проводит группа лиц, включая поверителя организации, указанной в 6.1, и не менее двух специалистов, прошедших курсы повышения квалификации и других лиц (при необходимости), аттестованных в области промышленной безопасности в соответствии с РД-03-20.
- 6.3 К поверке резервуара допускают лиц, изучивших настоящую рекомендацию, техническую документацию на резервуар и его конструкцию, средства поверки и прошедших инструктаж по безопасности труда в соответствии с ГОСТ 12.0.004, по промышленной безопасности в соответствии с РД-03-20.

ФГУП «ВНИИР» Страница 4 из 35

- 6.4 Лица, проводящие поверку резервуара, используют спецодежду костюмы по ГОСТ Р 12.4.290, спецобувь по ГОСТ 12.4.137, строительную каску по ГОСТ 12.4.087, рукавицы по ГОСТ 12.4.010.
- 6.5 Предельно допустимая концентрация (ПДК) вредных паров и газов в воздухе, измеренная газоанализатором вблизи и внутри резервуара на высоте 2000 мм, не должна превышать 300 мг/м^3 по Γ OCT 12.1.005-88.
 - 6.6 Измерения параметров резервуара во время грозы категорически запрещены.
- 6.7 Для освещения при проведении измерений параметров резервуара применяют светильники во взрывозащитном исполнении.
 - 6.8 Перед началом поверки резервуара проверяют исправность:
 - лестниц с поручнями и подножками;
 - помостов с ограждениями.
- 6.9 В процессе измерений параметров резервуара обеспечивают двух или трехкратный обмен воздуха внутри резервуара. При этом анализ воздуха на содержание вредных паров и газов проводят через каждый час.
- 6.10 Продолжительность работы внутри резервуара не более 4-х часов, после каждой четырехчасовой работы перерыв на один час.

7 УСЛОВИЯ ПОВЕРКИ

При поверке соблюдают следующие условия:

- 7.1 Температура окружающего воздуха (20 ± 15) °C.
- 7.2 Скорость ветра не более 10 м/с.
- 7.3 Состояние погоды без осадков.
- 7.4 Резервуар при первичной поверке должен быть порожним. При периодической и внеочередной поверках в резервуаре может находиться жидкость до произвольного уровня.
- 7.5 При наличии жидкости в резервуаре для нефтепродукта при его поверке (периодической или внеочередной) допускается использовать результаты измерений вместимости «мертвой» полости, полученные ранее, и вносить их в таблицу <u>Б.9</u> приложения <u>Б</u>, если изменение базовой высоты резервуара по сравнению с результатами ее измерений в предыдущей поверке составляет не более 0,1 %. В этом случае вместимость резервуара должна быть определена, начиная с исходного уровня.

Примечание - Вместимость «мертвой» полости резервуара для нефтепродуктов, образующих парафинистые отложения, при проведении периодической и внеочередной поверок допускается принимать равной ее вместимости, полученной при первичной поверке резервуара или полученной при периодической поверке резервуара после его зачистки.

8 ПОДГОТОВКА К ПОВЕРКЕ

- 8.1 При подготовке резервуара к поверке проводят следующие работы:
- 8.1.1 Проверяют на месте соответствие конструкции и внутренних деталей резервуара технической документации на него.
- 8.1.2 Проверяют состояние наружной поверхности стенки резервуара (на отсутствие деформаций стенки, загрязнений, брызг металлов, наплывов, заусенцев; на наличие

ФГУП «ВНИИР» Страница 5 из 35

необходимых арматуры и оборудования; исправность лестниц и перил) для возможности проведения наружных измерений.

- 8.1.3 Проверяют состояние отмостки резервуара (отсутствие трещин и целостность). Если проводят измерения внутренних параметров резервуара.
- 8.1.4 Демонтируют бетонные плиты установленные между бетонной стенкой и стенкой резервуара (рисунок А.1).

9 ПРОВЕДЕНИЕ ПОВЕРКИ РЕЗЕРВУАРА

9.1 Измерения длины окружности первого пояса

- 9.1.1 Длину окружности $L_{\rm H}$ измеряют на отметке высоты:
- равной $^{3}/_{4}$ высоты первого пояса, если высота пояса находится в пределах от 1500 до 2250 мм;
 - равной $^{8}/_{15}$ высоты первого пояса, если высота пояса составляет 3000 мм.

При наличии деталей, мешающих измерениям, допускается уменьшать высоту на величину до 300 мм от отметки $^{3}/_{4}$ или $^{8}/_{15}$ высоты первого пояса.

- 9.1.2 Перед измерением длины окружности на высоте, указанной в <u>9.1.1</u>, через каждые 5 м наносят горизонтальные отметки на стенке резервуара.
 - 9.1.3 По нанесенным отметкам рулетку прикладывают к стенке резервуара.
- 9.1.4 Начальную точку измерений длины окружности выбирают на стенке резервуара и отмечают двумя взаимно перпендикулярными штрихами при помощи чертилки, толщина лезвия которой не более 0,5 мм.
- 9.1.5 Начало ленты рулетки укладывают нижней кромкой по горизонтальному штриху и начальную отметку шкалы рулетки совмещают вертикальным штрихом начальной точки измерений на стенке резервуара.
- 9.1.6 При измерениях лента рулетки должна быть натянута, плотно прилегать к стенке резервуара, не перекручиваться и лежать нижней кромкой на горизонтальных штрихах.
 - 9.1.7 Натяжение рулетки осуществляют при помощи динамометра усилием:
 - (100 ± 10) H для рулеток длиной 10 м и более;
 - (10 ± 1) H для рулеток длиной 1 5 м.

Для рулеток с желобчатой лентой - без натяжения.

- 9.1.8 После создания необходимого натяжения против конечной отметки шкалы рулетки на стене резервуара отмечают вертикальный штрих, а по нижней кромке ленты горизонтальный.
 - 9.1.9 Последующие укладки рулетки проводят в том же порядке.
- 9.1.10 При измерениях следят, чтобы начало шкалы рулетки совпало с конечным штрихом предыдущей укладки.
 - 9.1.11 Длину окружности $L_{\rm H}$ измеряют не менее двух раз.
- 9.1.12 Начальную точку второго измерения смещают по горизонтали от начала первого не менее чем на 500 мм.
- 9.1.13 Относительное расхождение между результатами двух измерений длины окружности $\delta L_{\rm H}$, %, рассчитываемое по формуле

$$\delta L_{\rm H} = 2 \cdot \frac{L_{\rm H1} - L_{\rm H2}}{L_{\rm H1} + L_{\rm H2}} \cdot 100\% \tag{1}$$

должно находиться в пределах \pm 0,01 %.

- 9.1.14 При расхождении, превышающем указанное в <u>9.1.13</u>, измерения следует повторять до получения двух последовательных измерений, удовлетворяющих условию 9.1.13.
- 9.1.15 Результаты двух измерений величины $L_{\rm H}$, удовлетворяющих условию <u>9.1.13</u>, в миллиметрах вносят в протокол, форма которого приведена в приложении <u>Б</u>.
- 9.1.16 При измерениях длины окружности резервуара учитывают поправки на ее увеличение при наложении рулетки на вертикальные сварные соединения, накладки и другие выступающие детали во всех случаях, если между лентой рулетки и стенкой резервуара имеется зазор.
- 9.1.17 Поправку на длину окружности первого пояса резервуара при наложении рулетки на вертикальные сварные соединения, накладки и другие выступающие детали (далее поправку на обход) определяют при помощи металлических скоб длиной 600 1000 мм (рисунок <u>A.2</u>).

Выступающую часть на высоте измерений длины окружности первого пояса перекрывают скобой и на стенке резервуара у обоих концов скобы наносят штрихи. Затем, плотно прижимая ленту рулетки к стенке резервуара, измеряют длину дуги, находящуюся между этими штрихами.

Скобу переносят на свободное от выступающих деталей место на том же уровне первого пояса, отмечают штрихами и измеряют расстояние между ними рулеткой, плотно прижимая ленту рулетки к стенке резервуара. Разность между результатами первого и второго измерений длины дуги - значение поправки на обход, которое учитывают при вычислении длины окружности первого пояса.

Значение поправок (суммарных при наличии двух и более) на обход в миллиметрах вносят в протокол, форма которого приведена в приложении $\underline{\mathbf{b}}$.

9.2 Измерения радиальных отклонений образующих резервуара от вертикали

- 9.2.1 Радиальные отклонения образующих резервуара (далее радиальные отклонения) измеряют с применением измерительной каретки с отвесом (рисунок $\underline{A.3}$) или измерительной каретки с теодолитом (рисунок $\underline{A.5}$).
- Примечание При скорости ветра более 5 м/с для выполнения измерений радиальных отклонений применяют измерительную каретку с теодолитом.
- 9.2.2 Окружность первого пояса резервуара, измеренную по <u>9.1</u>, разбивают на равные части (откладывают дугу постоянной длины и наносят вертикальные отметки на стенке первого пояса), начиная с образующей резервуара, находящейся в плоскости А (рисунок А.6), проходящей через точку измерений уровня жидкости и базовой высоты резервуара на направляющей планке измерительного люка и продольную ось резервуара, с соблюдением следующих условий:
 - число разбивок должно быть четным;
- число разбивок в зависимости от вместимости резервуара выбирают по таблице 2.

Таблица 2

Наименование	Значение показателя для вм	Значение показателя для вместимости резервуара, м ³ , не менее								
показателя	1000	3000								
Число разбивок	34	38								

Все отметки разбивок пронумеровывают по часовой стрелке.

ФГУП «ВНИИР» Страница 7 из 35

9.2.3 При определении радиальных отклонений поясов резервуара с применением измерительной каретки с отвесом измеряют расстояние a от стенки резервуара до нити отвеса, проходящей через отметки разбивки (рисунок $\underline{A.3}$).

Для установки измерительной каретки (далее - каретки) на резервуаре между цилиндрической стенкой и бетонной стенкой устанавливают распорную стойку, на которой крепят блок, через который перекидывают тяговый канат для подъема каретки. Нить отвеса закрепляют на распорной стойке.

Для перехода от одной отметки разбивки к другой каретку опускают, а распорную стойку со всей оснасткой перемещают по стенке резервуара. Расстояние от стенки резервуара до нити *а* отвеса отсчитывают по линейке. Линейку устанавливают в середине высоты первого пояса при помощи магнитного держателя перпендикулярно к стенке резервуара, поочередно для каждой отметки разбивки.

Отсчеты по линейке снимают при передвижении каретки вверх вдоль образующей резервуара, проходящей через отметки разбивки.

Измерения вдоль каждой образующей резервуара начинают с отметки разбивки под номером один первого пояса. На каждом следующем поясе измерения проводят в трех сечениях: среднем, находящемся в середине пояса, в нижнем и верхнем, расположенных на расстоянии 50 - 100 мм от горизонтального сварного шва. На верхнем поясе - в двух сечениях: нижнем и среднем.

Отсчеты по линейке снимают с погрешностью в пределах ± 1 мм в момент, когда каретка установлена в намеченной точке при неподвижном отвесе.

Результаты измерений расстояния a в миллиметрах вносят в протокол, форма которого приведена в приложении $\underline{\mathbf{b}}$.

9.2.4 При определении радиальных отклонений с применением каретки с теодолитом (рисунок <u>A.5</u>) измеряют расстояние a от стенки резервуара до визирной линии b теодолита b, направленной перпендикулярно к линейке b, укрепленной на оси каретки b.

При этом теодолит 8 устанавливают над геодезической точкой на расстоянии от стенки резервуара, обеспечивающем удобное наведение зрительной трубы, но не менее 10 м от измеряемой образующей резервуара.

Для исключения смещения каретки при ее движении по стенке резервуара струну 4 с грузом 7 закрепляют магнитным держателем 5.

Измерения начинают с установки каретки на $^{3}/_{4}$ высоты первого пояса, далее перемещают каретку вверх в порядке, указанном в 9.2.3.

Теодолит устанавливают над геодезической точкой, настраивают и приводят в рабочее положение в соответствии с инструкцией завода-изготовителя и наводят вертикальную нить сетки зрительной трубы на штрих шкалы, кратный 1 см, примерно в середине линейки. Конец шкалы линейки должен находиться у оси каретки.

Отсчеты снимают по шкале линейки при последовательной установке каретки в точках измерений и зафиксированном положении горизонтального круга теодолита.

Результаты измерений расстояния a в миллиметрах вносят в протокол, форма которого приведена в приложении $\underline{\mathbf{b}}$.

9.2.5 При наличии ребер жесткости, расположенных по внешней поверхности резервуара, расстояние a от стенки резервуара до нити отвеса измеряют в соответствии с 9.2.3 или 9.2.4 в двух сечениях поясов резервуара в зависимости от места расположения ребер жесткости:

ФГУП «ВНИИР» Страница 8 из 35

- если ребро жесткости находится в середине (или ближе к середине) пояса, то измерения величины a проводят в сечениях, находящихся выше и ниже ребра жесткости на расстоянии $^{1}/_{4}$ $^{1}/_{5}$ высоты пояса;
- если ребро жесткости находится ближе к верхнему или нижнему сварным швам, то измерения величины *а* проводят в среднем сечении пояса и в сечении, находящемся выше или ниже сварного шва на расстоянии 50 100 мм.

9.3 Измерения плотности жидкости

- 9.3.1 Плотность жидкости, находящейся в резервуаре при его поверке, $\rho_{\text{ж.г.}}$ измеряют по <u>ГОСТ 3900</u> в объединенной пробе жидкости, составленной из точечных проб, отобранных из резервуара в соответствии с <u>ГОСТ 2517</u>.
- 9.3.2 Результат измерения величины $\rho_{\text{ж.г.}}$ вносят в протокол, форма которого приведена в приложении $\underline{\textbf{Б}}$.

9.4 Измерения уровня жидкости

- 9.4.1 Уровень жидкости, находящейся в резервуаре при его поверке, $H_{\rm r}$ измеряют при помощи измерительной рулетки с грузом или уровнемера.
- 9.4.2 Результат измерения величины $H_{\rm r}$ вносят в протокол, форма которого приведена в приложении $\underline{\bf b}$.

9.5 Измерения высоты поясов и толщины стенок

- 9.5.1. Высоту поясов $h_{\rm H}$ измеряют с наружной стороны резервуара вдоль образующей резервуара, находящейся в плоскости А (рисунок А.7) по <u>9.2.2</u>, при помощи измерительной рулетки с грузом и упорного угольника.
- 9.5.2 Для резервуаров без лестниц измерения проводят, поднимая рулетку с грузом от упорного угольника 90° (рисунок A.8) I, находящегося у нижнего края пояса, до упорного угольника 90° 2, находящегося у верхнего края пояса, считывая разницу в показаниях рулетки относительно неподвижной отметки.
- 9.5.3 Высотой *i*-го пояса считают расстояние h_i , в пределах которого внутренний радиус пояса r_i имеет постоянное значение (рисунок A.8). Значение h_i получают вычитанием из значения h_{hi} значений нахлестов, принятых по технической документации.
- 9.5.4 Толщины стенок поясов δ измеряют два раза с помощью ультразвукового толщиномера с погрешностью в пределах $\pm 0,1$ мм. Расхождение между результатами двух измерений должно находиться в пределах $\pm 0,2$ мм, или его принимают равным указанному в технической документации.
- 9.5.5 Толщину слоя покраски резервуара $\delta_{c,\kappa}$ определяют измерениями толщины скола краски штангенциркулем с погрешностью не более $\pm 0,1$ мм.

Толщину слоя внутреннего антикоррозионного покрытия $\delta_{c.n}$ измеряют при помощи ультразвукового толщиномера с погрешностью до $0,1\,$ мм.

9.5.6 Результаты измерений величин $h_{\rm H}$, δ , $\delta_{\rm c.\kappa}$, $\delta_{\rm c.n}$ вносят в протокол, форма которого приведена в приложении $\underline{\rm E}$.

9.6 Определение объемов внутренних деталей

9.6.1 Объемы внутренних деталей, находящихся в резервуаре определяют по данным технической документации или по данным измерений геометрических параметров

ФГУП «ВНИИР» Страница 9 из 35

внутренних деталей с указанием их расположения по высоте от днища резервуара и от стенки первого пояса резервуара $l_{\rm I}$ угла $\phi_{\rm I}$ между плоскостью A и плоскостью C (рисунок A.6). Значение угла $\phi_{\rm I}$ определяют методом разбивания длины окружности первого пояса с погрешностью $\pm 1^{\circ}$ в следующей последовательности:

- длину окружности первого пояса изнутри резервуара разбивают на восемь частей, начиная с плоскости A (рисунок A.6), по часовой стрелке;
 - на днище резервуара через его центр и точки разбивки проводят восемь радиусов;
- устанавливают номер сектора, в пределах которого находится плоскость С (рисунок А.6);
- в пределах вышеустановленного сектора на стенке резервуара до плоскости C откладывают (размечают) n_0 -ное число дополнительных хорд длиной S_0 , соответствующей 1° , вычисляемой по формуле

$$S_{\Diamond} = \frac{L_{\text{EM}}}{\pi} \, 0,0087265; \tag{2}$$

- значение угла ф1 определяют по формуле

$$\varphi_1 = 45N_0 + n_0, \tag{3}$$

где N - число больших разбиваний;

 n_0 - число отложений хорды S_0 до плоскости C.

Результаты измерений величин N_0 , n_0 , ϕ_1 вносят в протокол, форма которого приведена в приложении \underline{b} .

- 9.6.2 Внутренние детали сложной геометрической формы могут быть заменены эквивалентными по объему и расположению или расчленены на более простые. Об этом делают запись в протоколе, форма которого приведена в приложении $\underline{\mathbf{b}}$.
- 9.6.3 Проводят нивелирование нижней границы внутренней детали в следующей последовательности (рисунок А.9):
- а) устанавливают нивелир на днище резервуара и приводят его в горизонтальное положение;
- б) устанавливают рейку в точке касания днища грузом рулетки JI и отсчитывают показания рейки $J_{\scriptscriptstyle \rm J}$ с точностью до 1 мм;
- в) устанавливают рейку в точке A и отсчитывают показания рейки с точностью до 1 мм:
- 1) в точке B, соответствующей расстоянию по вертикали от днища резервуара до нижнего торца внутренней детали по ее оси J'_n ;
- 2) в точке C, соответствующей расстоянию по вертикали от днища резервуара до горизонта J''_{π} .

Примечание - Нивелирование нижней границы внутренней детали может быть проведено при нивелировании высоты «мертвой» полости резервуара.

Результаты измерений $J_{\rm n},\,J'_{\rm n},\,J''_{\rm n}$ вносят в протокол, форма которого приведена в приложении <u>Б</u>

9.7 Измерения вместимости «мертвой» полости

9.7.1 Если резервуар имеет несколько приемно-раздаточных патрубков, то высоту «мертвой» полости, соответствующую j-му приемно-раздаточному патрубку $(h_{\text{м.п}})_{\text{j}}$, измеряют рулеткой по стенке резервуара от днища резервуара до нижней точки j-го приемно-

раздаточного патрубка. Нумерацию высот «мертвой» полости проводят, начиная с плоскости A (рисунок A.6).

Если резервуар имеет приемно-раздаточные устройства, например, устройства ПРУ-Д, то измеряют рулеткой (рисунок A.12):

- высоту по стенке резервуара от контура днища до места установки j-го приемнораздаточного устройства h_{vi} ;
- расстояние от нижнего образующего j-го приемно-раздаточного устройства до его нижнего или верхнего среза h_{ci} ;
- длину j-го приемно-раздаточного устройства (расстояние от центра среза устройства до стенки резервуара) $l_{\rm ci}$.

Результаты измерений величин $(h_{\text{м.п}})_{\text{j}}, h_{\text{cj}}, l_{\text{cj}}$ в миллиметрах вносят в протокол, форма которого приведена в приложении \underline{b} .

- 9.7.2 Проводят нивелирование высоты «мертвой» полости резервуара с приемнораздаточным патрубком (ПРП) или приемно-раздаточным устройством (ПРУ) в следующей последовательности:
 - а) устанавливают нивелир в соответствии с 9.6.3, перечисление а);
- б) устанавливают рейку вертикально в точке касания днища грузом рулетки ЈІ и отсчитывают показания рейки J_{π} с точностью до 1 мм;
- в) устанавливают рейку вертикально в точке A и отсчитывают показания рейки с точностью до 1 мм:
- 1) в точке B, соответствующей нижней внутренней образующей j-го ПРП $(J''_{\text{м.п}})^{\text{п}}$, или соответствующей верхнему срезу j-го ПРУ $(J'_{\text{м.п}})^{\text{y}}_{j}$;
- 2) в точке C, соответствующей расстоянию по вертикали от днища резервуара до горизонта нивелира $(J''_{\text{м.п}})^{\text{п}}_{i}, (J''_{\text{м.п}})^{\text{y}}_{i}$.

Результаты измерений J_{Π} , $(J'_{\text{м.п}})_{j}$, $(J''_{\text{м.п}})_{j}$. вносят в протокол, форма которого приведена в приложении \underline{b}

9.8 Измерения координаты точки отсчета значений уровня жидкости или базовой высоты

- 9.8.1 Измеряют расстояние по горизонтали между линейкой, установленной вертикально по первой внешней образующей резервуара, и внешней образующей измерительного люка l_1 (рисунок A.10) при помощи измерительной рулетки с погрешностью ± 5 мм.
- 9.8.2 Измеряют штангенциркулем наружный $d_{\rm H}$ и внутренний $d_{\rm BH}$ диаметры измерительного люка и расстояние между точкой измерений на планке и внутренней стенкой измерительного люка l_2 .
- 9.8.3 Результаты измерений величин l_1 , $d_{\rm H}$, $d_{\rm BH}$, l_2 вносят в протокол, форма которого приведена в приложении \underline{b} .

9.9 Измерения базовой высоты резервуара

9.9.1 Базовую высоту резервуара H_6 измеряют рулеткой с грузом не менее двух раз. Расхождение между результатами двух измерений не должно превышать 2 мм.

При наличии жидкости в резервуарах с плавающим покрытием уровень ее должен быть не ниже уровня, установленного технологической картой на резервуар.

9.9.2 Результаты измерений базовой высоты H_6 вносят в протокол, форма которого приведена в приложении Б.

ФГУП «ВНИИР» Страница 11 из 35

9.9.3 Базовую высоту измеряют ежегодно. Ежегодные измерения базовой высоты резервуара проводит комиссия, назначенная приказом руководителя предприятия - владельца резервуара, в состав которой должен быть включен специалист, прошедший курсы повышения квалификации по поверке и калибровке резервуаров.

При ежегодных измерениях базовой высоты резервуар с плавающим покрытием может быть наполнен до минимально допустимого уровня.

Результат измерений базовой высоты резервуара не должен отличаться от ее значения, указанного в протоколе поверки резервуара, более чем на 0,1 %.

Если это условие не выполняется, то проводят повторное измерение базовой высоты при уровне наполнения резервуара, отличающимся от его уровня наполнения, указанного в протоколе поверки резервуара, не более чем на 500 мм.

Результаты измерений базовой высоты оформляют актом.

10 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И СОСТАВЛЕНИЕ ГРАДУИРОВОЧНОЙ ТАБЛИЦЫ

10.1 Обработка результатов измерений

- 10.1.1 Обработку результатов измерений при поверке проводят в соответствии с приложением Γ .
- 10.1.2 Результаты вычислений вносят в журнал, форма которого приведена в приложении Д.

10.2 Составление градуировочной таблицы резервуара

10.2.1 Градуировочную таблицу составляют, используя формулу (Γ .53) приложения Γ , с шагом $\Delta H_{\rm H} = 1$ см или шагом $\Delta H_{\rm H} = 1$ мм (при необходимости), начиная с исходного уровня (уровня, соответствующего высоте «мертвой» полости $H_{\rm M.R}$) и до предельного уровня $H_{\rm np}$, рассчитываемого по формуле

$$H_{\rm np} = \sum_{i=1}^{n} h_i \tag{4}$$

где h_i - высота i-го пояса, мм.

10.2.2 При вычислении величин $V_{\text{ц}i}$, $\Delta V_{\text{г}i}$, $V_{\text{в.д}}$, $V_{\text{всп}}$, входящих в формулу (Γ .53) приложения Γ , проводят линейную интерполяцию в пределах пояса (или участка) по формулам:

$$\Delta\omega_1 = \frac{V_{ui}}{h_i} \, 10 \tag{5}$$

$$\Delta\omega_2 = \frac{\Delta V_{ri} - \Delta V_{r(i-1)}}{h_i} 10 \tag{6}$$

$$\Delta\omega_3 = \frac{L_{\text{вн}}^2}{4\pi 10^8} - \frac{V_{\text{в.д.}}^{"}}{H_{\text{п}} - H_{\text{м.п.}}}$$
 на участке от $H_{\text{м.п}}$ до $H_{\text{п}}$, (7)

где $\Delta V_{\text{в.д.}}^{"}$ - объем внутренних деталей, включая объемы опор плавающего покрытия, на участке от $H_{\text{м.п}}$ до $H_{\text{п}}$

$$\frac{L_{\rm BH}^2}{4\pi 10^8} - \frac{\pi}{4\cdot 10^8} (D_n^2 - D_1^2 - D_2^2 - \dots)$$
 на участке от $H_{\rm M.П}$ до $H_{\rm II}$. (8)

10.2.3 В пределах каждого пояса вычисляют коэффициент вместимости, равный вместимости, приходящейся на 1 мм высоты наполнения.

ФГУП «ВНИИР» Страница 12 из 35

 $10.2.4~\Pi$ ри необходимости составляют градуировочную таблицу в пределах уровня, соответствующего высоте «мертвой» полости $H_{\text{м.п}}$ или уровня, соответствующего высоте всплытия плавающего покрытия $H_{\text{всп}}$, используя формулу (Γ .40) приложения Γ . При этом коэффициент вместимости вычисляют в пределах каждого изменения уровня жидкости в резервуаре на 1 см.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 11.1 Результаты поверки резервуара оформляют свидетельством о поверке в соответствии с [4].
 - 11.2 К свидетельству о поверке прикладывают:
 - а) градуировочную таблицу;
- б) протокол поверки (оригинал прикладывают к первому экземпляру градуировочной таблицы);
 - в) эскиз резервуара.
- 11.3 Форма титульного листа градуировочной таблицы и форма градуировочной таблицы приведены в приложении Г. Форма акта ежегодных измерений базовой высоты резервуара приведена в приложении В.

Протокол поверки подписывает поверитель и лица, участвующие при проведении поверки резервуара. Подпись поверителя заверяют оттиском поверительного клейма.

Титульный лист и последнюю страницу градуировочной таблицы подписывает поверитель, подпись поверителя заверяют оттиском поверительного клейма.

11.4 Градуировочную таблицу утверждает руководитель органа аккредитованного на право проведения поверки.

ФГУП «ВНИИР» Страница 13 из 35

ПРИЛОЖЕНИЕ А

Схемы оборудования и измерения параметров резервуаров при поверке

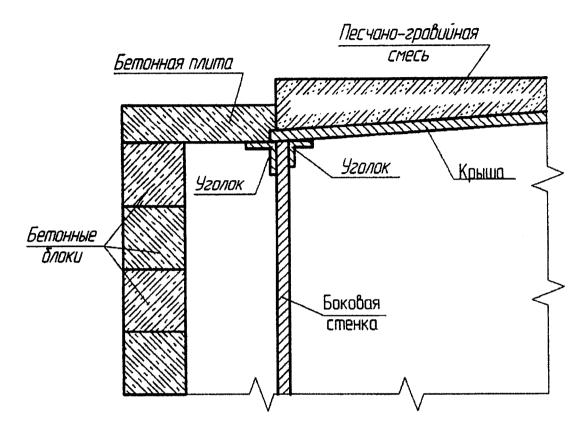


Рисунок А.1 – Схема крепления бетонной плиты

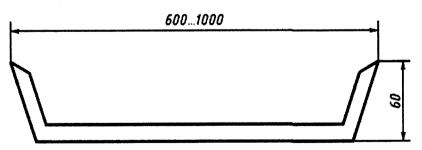


Рисунок А.2 - Скоба для измерений оправок на обход рулеткой накладок и других выступающих частей

ФГУП «ВНИИР» Страница 14 из 35

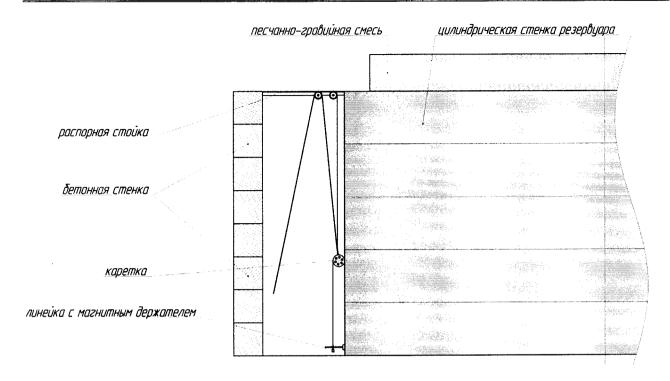
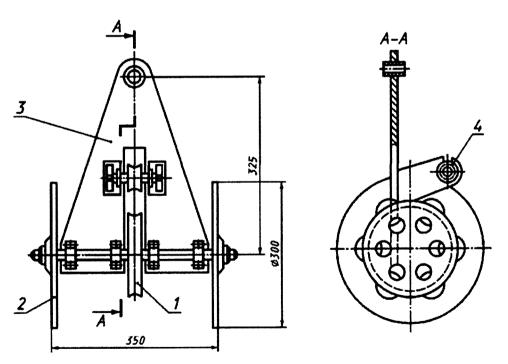
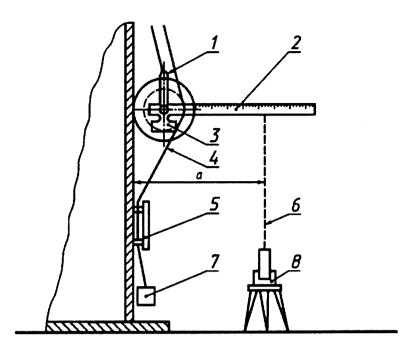
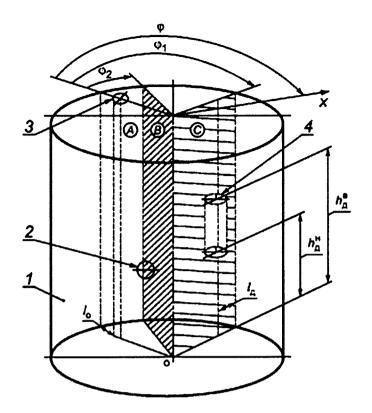




Рисунок А.3 - Схема измерений радиальных отклонений с применением измерительной каретки с отвесом


1 - блок для струны отвеса; 2 - колесо; 3 - база каретки; 4 - натяжной ролик Рисунок А.4 Измерительная каретка

ФГУП «ВНИИР» Страница 15 из 35

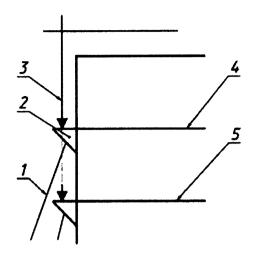
1 - каретка; 2 - линейка; 3 - противовес; 4 - струна; 5 - магнитный держатель; 6 - визирная линия;

7 - груз; 8 - теодолит; а - расстояние от стенки резервуара до нити отвеса Рисунок А.5 - Схема измерения радиальных отклонений с применением измерительной каретки с теодолитом

1 - стенка резервуара; 2 - приемно-раздаточный патрубок; 3 - измерительный люк; 4 - внутренняя деталь;

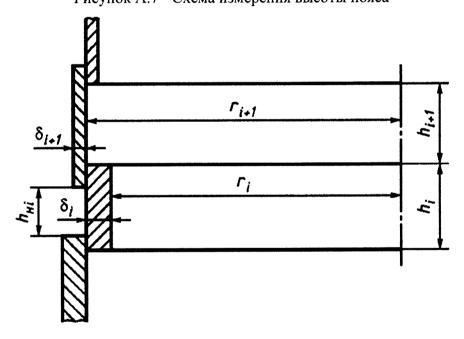
φ - угол между плоскостью, проходящей через точку измерений уровня жидкости и базовой высоты

резервуара на направляющей планке измерительного люка (плоскостью А) и направлением наклона


резервуара X; φ_1 - угол между плоскостью A и плоскостью, проходящей через продольные оси

резервуара и внутренней детали (плоскостью C); ϕ_2 - угол между плоскостью A и плоскостью,

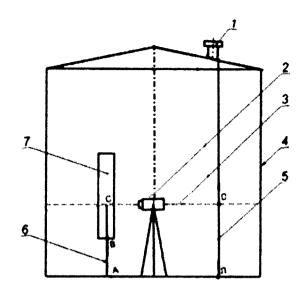
проходящей через продольные оси резервуара и приемно-раздаточного патрубка (плоскостью В);


 l_0 - расстояние от точки касания днища грузом рулетки до стенки 1-го пояса резервуара; $l_{\rm д}$ - расстояние от центра внутренней детали до стенки 1-го пояса резервуара; $h^{\rm H}_{\ \rm d}, h^{\rm B}_{\ \rm d}$ - нижнее и верхнее положения внутренней детали Рисунок А.6 - Схема измерений координат внутренней детали

ФГУП «ВНИИР» Страница 17 из 35

1 - штанга упорного угольника 90°; 2 - упорный угольник 90°; 3 - измерительная рулетка с грузом;

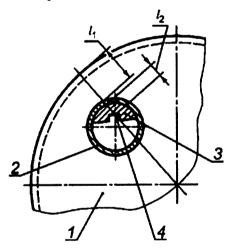
4, 5 - сварные швы резервуара Рисунок А.7 - Схема измерения высоты пояса


 $r_i,\,h_{\mathrm{H}i}$ и $h_i,\,\delta_i$ - внутренний радиус, внешняя и внутренняя высота, толщина стенки i-го пояса

соответственно; r_{i+1} , h_{i+1} , δ_{i+1} - внутренний радиус, внутренняя высота, толщина i+1-го пояса

соответственно

Рисунок А.8 - Схема расположения поясов резервуара

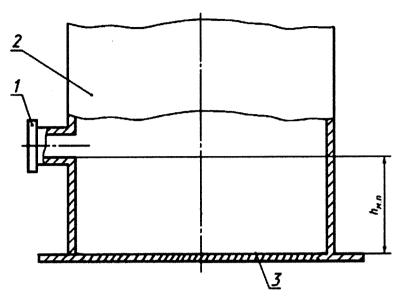

ФГУП «ВНИИР» Страница 18 из 35

1 - измерительный люк; 2 - нивелир; 3 - горизонт нивелира; 4 - резервуар; 5 - рейка, установленная в точке Λ ; 6 - рейка, установленная в точке Λ ; Λ , Λ - точки установки рейки;

В, С, D - точки отсчета по рейке

Рисунок А.9 - Схема нивелирования нижнего положения внутренней детали

1 - кровля резервуара; 2 - измерительный люк; 3 - направляющая планка;


4 - точка измерений уровня жидкости или базовой высоты резервуара;

 l_1 - расстояние между внешней образующей резервуара и измерительного люка; l_2 - расстояние между точкой измерений на планке измерительного люка и внутренней образующей

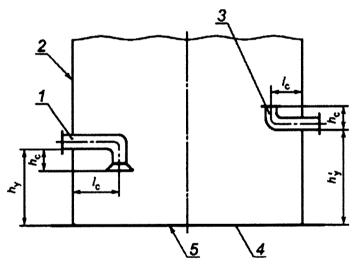

измерительного люка

Рисунок А.10 - Схема размещения измерительного люка

ФГУП «ВНИИР» Страница 19 из 35

I - приемно-раздаточный патрубок; 2 - стенка резервуара; 3 - днище; $h_{\text{м.п}}$ - высота «мертвой» полости Рисунок А.11 - Схема измерения «мертвой» полости

 $1,\,3$ - приемно-раздаточные устройства; 2 - стенка резервуара; 4 - днище; 5 - контур днища; $h_y,\,h_y'$ - высоты приемно-раздаточных устройств; h_c - расстояние от нижней

образующей приемно-раздаточного устройства до его нижнего или верхнего среза; $l_{\rm c}$ - длина приемно-раздаточного устройства

Рисунок А.12 - Схема размещения приемно-раздаточных устройств

ФГУП «ВНИИР» Страница 20 из 35

ПРИЛОЖЕНИЕ Б

(обязательное) Форма протокола поверки резервуара

ПРОТОКОЛ

поверки резервуара геометрическим методом

Таблица Б.1 - Общие данные

		,	Дата	-					F	Р езервуа	p
Код доку- мента	Регистраци- онный номер	Чис ло	Ме-	Го д	Основа- ние для прове- дения поверки	Место прове- дения поверки	Сред- ства изме- рений	Тип	Но-	Назна- чение	Погрешность определения вместимости резервуара,
1	2	3	4	5	6	7	8	9	10	11	12

Таблица Б.2 - Условия проведения измерений

Температура воздуха, °С	Скорость ветра, м/с	Загазованность, мг/м ³

Таблица Б.3 - Длина окружности первого пояса

В миллиметрах

Номер измерения	Длина окружности	Поправка на обход накладок
1		
2		

Таблица Б.4 - Радиальные отклонения образующих резервуара от вертикали

Номер поя-	Точка из-		Показание линейки а, мм												
ca	мерения	1	2	3	4	5	6	7	8	9	10	11	12	•••	 m
I	$3/4h_1$														
II	Н														
	C														
	В														
III	Н														
	С			1.5											
	В														
IV	Н														
	С														

ФГУП «ВНИИР» Страница 21 из 35

Номер поя-	Точка из-	Показание линейки а, мм													
ca	мерения	1	2	3	4	5	6	7	8	9	10	11	12	 :	m
	В														
V	Н			-											
	C														
	В														
VI	Н														
	С			·											
	В														
•••															
•••	Ü														
n	Н														
	С														

Примечание - При наличии ребра жесткости, например, в v-м поясе (9.2.5):

а) если ребро жесткости находится в середине пояса, то в строке «С» вносят показание линейки, определенное по формуле

$$(a_v^{\xi})_{\xi} = \frac{(a_v^{\xi})_{\xi}' + (a_v^{\xi})_{\xi}'}{2},$$

 $_{\Gamma \text{Де}} (a_{\mathrm{v}}^{\epsilon})_{k}^{\cdot}, (a_{\mathrm{v}}^{\epsilon})_{k}^{\tau}$ - показания линейки в точках выше и ниже ребра жесткости;

б) если ребро жесткости находится ближе к верхнему или нижнему сварному шву, то среднее расстояние от стенки резервуара до нити отвеса вычисляют по формуле

$$(a_{cp})_v = \frac{\sum_{k=1}^{\infty} (a_v^k)_k - \sum_{k=1}^{\infty} [a_v^{k(n)}]_k}{2m},$$

 $[a_v^{E(N)}]_{\zeta}$ - показание линейки в точке выше нижнего (ниже верхнего) сварного шва.

Таблица Б.5 - Параметры поверочной и хранимой жидкостей (нефти и нефтепродуктов)

Плотность жидкости при по-	Уровень жидкости при по-	Плотность хранимой жидко-
верке $\rho_{\text{ж.г}}$, кг/м ³	верке H^{r} , мм	сти $\rho_{\text{ж.x}}$, кг/м ³
1	2	3

Примечание - За значение плотности $\rho_{\text{ж.x}}$ (графа 3) принимают значение плотности жидкости при хранении.

Таблица Б.6 - Параметры поясов резервуара

TT	Высота	Толщина	Толщина	Высота	Схема нахле-	Толщина слоя ан-
Номер пояса	пояса <i>h</i> _{ні} ,	пояса δ_i ,	слоя краски	нахлеста $h_{\text{нх}}$,	ста (+; -; 0)	тикоррозионного
	MM	MM	$\delta_{c.\kappa}$, mm	MM	Cla (1, 2, 0)	покрытия $\delta_{c.n}$, мм
1	2	3	4	5	6	7
I						
II						
III						

ФГУП «ВНИИР» Страница 22 из 35

Номер пояса	пояса n_{Hi} ,		Толщина слоя краски		Схема нахле- ста (+; -; 0)	Толщина слоя антикоррозионного покрытия $\delta_{c.n}$, мм
	MM	MM	$\delta_{c.\kappa}$, mm	MM		покрытия осл, мм
1	2	3	4	5	6	7
IV						
V						
VI						
VII						
VIII						
IX						
X						
XI						
XII						
	_					

Примечание - В графе 6 указывают знак «+», если текущий пояс включает в себя предшествующий; знак «-», если текущий пояс включается в предшествующий; при сварке встык указывают «0».

Таблица Б.7 - Внутренние детали цилиндрической формы

Пиомотр	Высота от	днища, мм	Расстояние от	Число ра		
Диаметр, мм	Нижняя Верхняя граница $h_{\ \mu}^{B}$ граница $h_{\ \mu}^{B}$		стенки первого пояса $l_{\rm д}$, мм	N_0	n_0	Угол ф₁,°

Таблица Б.7.1 - Нивелирование нижней границы внутренней детали

Диаметр, мм	067 ov. v ³	Верхняя граница $h^{\scriptscriptstyle B}_{\;\scriptscriptstyle J}$,	Отсчет по рейке, мм				
	Объем, м	MM	$J_{\scriptscriptstyle m II}$	$J'_{\mathcal{A}}$	$J''_{\mathtt{A}}$		
1	2	3	4	5	6		

Примечания

- 1 Графу 3 заполняют только для внутренней детали сложной геометрической формы
- 2 Значение h_{π}^{B} (графа 3) принимают по технической документации на резервуар.

Таблица Б.8 - Внутренние детали прочей формы

	Высота от днища, мм		Расстояние от	Число раз		
Объем, м 3 Нижняя Верхняя граница $h^{_{\rm B}}_{_{\rm A}}$ граница $h^{_{\rm B}}_{_{\rm A}}$		стенки первого пояса $l_{\rm д}$, мм	N_0	n_0	Угол ф₁,°	

Таблица Б.9 - Параметры «мертвой» полости с приемно-раздаточным патрубком (ПРП)

Высота $h_{\text{м.п}}$, мм, ПРП под номером			Угол ф ₂ ,°, ПРП под номером				
1	2	3	4	1	2	3	4
1	2	3	4	5	6	7	8

ФГУП «ВНИИР» Страница 23 из 35

Высота $h_{\text{м.п}}$, мм, ПРП под номером			Угол ф ₂ ,°, ПРП под номером				
1	2	3	4	1	2	3	4

Таблица Б.9.1 - Параметры «мертвой» полости с приемно-раздаточным устройством (ПРУ)

Высота установ- ки h_y , мм, ПРУ под номером		Расстояние h_c , мм, ПРУ под номером		Длина $l_{\rm c}$, мм, ПРУ под номером		Угол ф ₂ ,°, ПРУ под номером		Вместимость	
1	2	1	2	1	2	1	2		
1	2	3	4	5	6	7	8	9	

Примечание - Число граф в зависимости от числа приемно-раздаточных устройств может быть увеличено.

Таблица Б.9.2 - Нивелирование высоты «мертвой» полости резервуара с ПРП

Помет ПВП	Отсчет по рейке, мм					
Номер ПРП	$J_{\scriptscriptstyle m J}$	$(J'_{M,\Pi})^{\Pi}$	$(J''_{M.\Pi})^{\Pi}$			
1	2	3	4			
	, , , , , , , , , , , , , , , , , , ,					

Примечания

Обозначение «п» соответствует термину «патрубок».

Таблица Б.9.3 - Нивелирование высоты «мертвой» полости резервуара с ПРУ

Hayram HDV		Отсчет по рейке, мм	
Номер ПРУ	$J_{\scriptscriptstyle m I}$	$(J'_{M.\Pi})^{y}$	$(J''_{\scriptscriptstyle{M.\Pi}})^{y}$
1	2	3	4

Примечания

Обозначение «у» (графы 3, 4) соответствует термину «устройство.

Таблица Б.10 - Высота превышения точки касания днища грузом рулетки и диаметр центральной трубы

В миллиметрах

Отсчет о рейке в точке касания днища грузом рулетки						
1-е измерение	2-е измерение					

ФГУП «ВНИИР» Страница 24 из 35

Таблица Б.11 - Координата точки измерений уровня жидкости и базовой высоты резервуара

В миллиметрах

l_1	l_2	$d_{\scriptscriptstyle \mathrm{H}}$	$d_{\mathtt{BH}}$

Таблица Б.12 - Базовая высота резервуара

В миллиметрах

T	Номер измерения			
Точка измерения базовой высоты H_6	1	2		
Риска измерительного люка				
Верхний срез измерительного люка				

Должности

Подписи и оттиски поверительного клейма, печатей (штампов)

Инициалы, фамилии

ПРИЛОЖЕНИЕ В

(рекомендуемое)

Форма акта измерений базовой высоты резервуара

УТВЕРЖДАЮ

Руководитель предприятия - владельца резервуара (директор, гл. инженер)

AKT

изме	рений базовой высоты резерв	yapa
COCTORIEN D TOM UTO VOMU	T.	0
Составлен в том, что коми	ссия, назначенная приказом п	наименование
	, в составе пре	едседателя
предприятия - владельца резервуара		
	и членов:	
инициалы, фамилия	и членов:	инициалы, фамилии
		базовой высоты резервуара
стального вертикального ци №	линдрического казематного	(с защитной стенкой) РВС-
при температуре окружаю	цего воздуха	_ °C.
Результаты измерений пред	дставлены в таблице 1.	
Таблица 1		В миллиметрах
Базовая высо	га резервуара	
Среднее арифметическое	Значение базовой высоты,	Уровень жидкости в ре-
значение результатов двух	установленное при повер-	зервуаре
измерений $(H_6)_k$	ке резервуара $(H_6)_{\Pi}$	
1	2	3
	базовой высоты резервуара δ_0	$_{6}$, %, вычисляют по формуле $_{k}$, $(H_{6})_{\Pi}$, приведены в 1-й, 2-й
графах.		
Вывод – требуется (не треб	буется) внеочередная поверка	резервуара.
		Председатель комиссии
	подпись	инициалы, фамилия
		Члены:
	подпись	инициалы, фамилия
	подпись	инициалы, фамилия

ФГУП «ВНИИР» Страница 26 из 35

ПРИЛОЖЕНИЕ Г

Обработка результатов измерений при поверке резервуара геометрическим методом

Г.1 Вычисление длины внутренней окружности и высоты первого пояса

 Γ .1.1 Длину наружной окружности первого пояса $L_{\rm H}$ вычисляют по формуле 1)

$$L_{\kappa} = \frac{L_{\kappa 1} + L_{\kappa 2}}{2} - \sum_{j=1}^{n_{j}} \Delta I_{\cos j}$$
 (Γ.1)

где $L_{\rm H1}, L_{\rm H2}$ - результаты двух измерений длины окружности первого пояса;

 $\Delta l_{\text{обх } j}$ - поправка на обход j-й выступающей детали;

 n_1 - число выступающих деталей.

Все расчеты проводят до 8-й значащей цифры, затем результат округляют для длин до целого числа миллиметров, для объемов - до целого числа тысячных долей метра кубического. Во всех формулах значения линейных размеров указывают в миллиметрах, объемы - в метрах кубических, массу - в килограммах, температуру - в градусах Цельсия, плотность - в килограммах на метр кубический.

 Γ .1.2 Длину внутренней окружности первого пояса $L_{\rm вн}$ вычисляют по формуле

$$L_{\rm BH} = L_{\rm H} - 2\pi(\delta_1 + \delta_{\rm c.K} + \delta_{\rm c.n}), \tag{\Gamma.2}$$

где δ_1 - толщина стенки первого пояса;

 $\delta_{c,\kappa}$ - толщина слоя краски;

 $\delta_{c,n}$ - толщина слоя антикоррозийного покрытия.

 Γ .1.3 Если при поверке в резервуаре находится жидкость, то длину внутренней окружности первого пояса, недеформированного от действия гидростатического давления жидкости, $L_{\text{вн.ц}}$ вычисляют по формуле

$$L_{\rm BH,II} = L_{\rm BH} - 2\pi \times \Delta r_{\rm r},\tag{\Gamma.3}$$

где $\pi = 3,1415926$ (здесь и далее везде);

 Δr_{Γ} - увеличение радиуса первого пояса, вызванное гидростатическим давлением жидкости, вычисляемое по формуле

$$\Delta r_{\Gamma} = \frac{\rho_{\text{ж.}\Gamma} \cdot \text{g} \cdot L_{\text{BH}}^2 \cdot (Hr - \frac{3}{4} \cdot h_1)}{4 \cdot 10^3 \cdot \pi^2 \cdot E \cdot \delta_1} \tag{\Gamma.4}$$

где g - ускорение свободного падения, м/ c^2 , равное 9,8066 м/ c^2 ;

 $\rho_{\text{ж.r}}$ - плотность жидкости, находящейся в резервуаре при поверке;

 H_{Γ} - высота наполнения резервуара при поверке;

 h_1 - высота первого пояса;

E - модуль упругости материала, Па, (для стали $E=2,1\times 10^{11}$ Па).

Примечание - Значение $\Delta r_{\rm r}$ учитывают, если $H_{\rm r} \ge 3000$ мм, при $0 < H_{\rm r} < 3000$ м принимают $\Delta r_{\rm r} = 0$.

Г.2 Вычисление длин внутренних окружностей и высот вышележащих поясов

- Г.2.1 Вычисление средних радиальных отклонений образующих резервуара от вертикали
- Г.2.1.1 Средние расстояния от стенки резервуара до нити отвеса вычисляют по формулам:

для первого пояса

$$a_{cp1} = \frac{\sum_{k=1}^{\infty} a_{1,k}}{m}; \tag{\Gamma.5}$$

для верхнего пояса

$$a_{\text{cp.s}} = \frac{\sum_{k=1}^{m} a_{n,k}^{\text{H}} + \sum_{k=1}^{m} a_{n,k}^{\text{c}}}{2m};$$
 (\Gamma.6)

для остальных поясов

$$a_{cpi} = \frac{\sum_{k=1}^{\infty} a_{i,k}^{R} + 2\sum_{k=1}^{\infty} a_{i,k}^{c} + \sum_{k=1}^{\infty} a_{i,k}^{g}}{4m},$$
(\Gamma.7)

где а - расстояние от стенки резервуара до нити отвеса;

i - номер пояса (1, ... n);

k - номер образующей резервуара (1, 2, 3, ... m);

 μ , c, θ - обозначения сечений: нижнего, среднего, верхнего соответственно

 $\Gamma.2.1.2$ Средние радиальные отклонения образующих резервуара $\Delta R_{\text{c.p}i}$ вычисляют по формуле

$$\Delta R_{\rm cpi} = a_{\rm cp.i} - a_{\rm cp1} \tag{\Gamma.8}$$

где i - номер пояса.

 $\Gamma.2.2$ Длину внутренних окружностей $L_{\text{вн}i}$ вышестоящих поясов вычисляют по формуле

$$L_{\rm BH} = L_{\rm H} - 2\pi \times (\delta_{\rm i} + \delta_{\rm c.K} - \Delta R_{\rm cpi}). \tag{\Gamma.9}$$

где δ_i - толщина стенки i-го пояса;

 $\delta_{c,\kappa}$ - толщина слоя краски.

 Γ .2.3 При наличии жидкости в резервуаре в момент его поверки длину внутренних окружностей вышестоящих поясов, недеформированных от действия гидростатического давления жидкости, $L_{\text{вн.ц}}$ вычисляют по формуле

$$L_{\text{вн.ц}i} = L_{\text{вн}i} - 2\pi \times \Delta r_{\Gamma i}, \tag{\Gamma.10}$$

где $\Delta r_{\text{г}i}$ - увеличение радиуса i-го пояса, вычисляемое по формуле

$$\Delta r_{ri} = \frac{\rho_{xir} \cdot g \cdot L_{tiki} \cdot (H_r - x_i)}{4 \cdot 10^2 \cdot \pi^2 \cdot E \cdot \delta_i},$$

где H_{Γ} - по Γ .1.3;

 x_i - расстояние от днища резервуара до середины i-го пояса, рассчитываемое по формуле

$$x_i = \sum_{i=1}^{i-1} h_i + \frac{h_i}{2}$$

где h_l - высота наполненного l-го промежуточного пояса;

 h_i - высота наполненного *i*-го пояса.

 Π римечание - Π ри $x_i > H_{\Gamma} \Delta r_{\Gamma i} = 0$.

 Γ .2.4 Если *i*-й пояс резервуара в соответствии с <u>9.2.5</u> имеет ребро жесткости, то значение величины $\Delta r_{\Gamma i}$, входящей в формулу (Γ .3) или (Γ .11), умножают на 0,4.

ФГУП «ВНИИР» Страница 28 из 35

 Γ .2.5 Внутреннюю высоту вышестоящих поясов h_i вычисляют по формуле

$$h_i = h_{Hi} - S_i h_{HXi} + S_{i+1} h_{HX(i+1)},$$
 (\Gamma.11)

где $h_{\rm H}$ - наружная высота i-го пояса;

 $h_{\text{нх}i}$ - высота нахлеста i-го пояса;

 S_i , S_{i+1} - величины, имеющие абсолютное значение, равное 1, и в зависимости от схемы нахлеста поясов в соответствии с таблицей $\underline{5.6}$ (графа 6) принимают знак «+» или «-»;

 $h_{HX(i+1)}$ - нахлеста (i+1)-го вышестоящего пояса.

Г.2.6 Результаты вычислений $a_{\text{ср}i}$, $\Delta R_{\text{ср}i}$, $L_{\text{вн}i}$, $L_{\text{вн.ц}i}$ вносят в таблицу <u>Д1</u> приложения <u>Д</u>.

Γ .3 Уровень жидкости в резервуаре, соответствующий высоте «мертвой» полости $H_{\text{м.п}}$

При нивелировании высоты «мертвой» полости резервуара уровень жидкости, соответствующий высоте «мертвой» полости $H_{\kappa,\pi}^{""}$, вычисляют по формуле

$$H_{\text{M,n}}^{""} = J_{\text{n}} - (J_{\text{M,n}}^{"} - J_{\text{M,n}}^{"}), \tag{\Gamma.12}$$

где J_{π} - показание рейки в точке Л (рисунок A.9);

 $J'_{\text{м.п}}$, $J''_{\text{м.п}}$ - показание рейки в точках B, C;

Г.4 Вычисление вместимости «мертвой» полости

 Γ .4.8 Вместимость «мертвой» полости $V_{\text{м.п}}$ вычисляют по формуле

$$V_{\text{M.}\Pi} = \frac{L_{\text{BH}}^2}{4\pi} \cdot H_{\text{M}\Pi} \tag{\Gamma.13}$$

Г.5. Вычисление базовой высоты

 Γ .5.1 Базовую высоту $H_{\rm 0}$ вычисляют по формуле

$$H_6 = \frac{H_{61} + H_{62}}{2}.\tag{\Gamma.14}$$

 Γ .5.2 Результаты вычислений H_6 вносят в журнал, форма которого приведена в приложении $\underline{\mathcal{I}}$.

Г.6 Вычисление вместимости поясов резервуара

 Γ .6.1 Вместимость *i*-го недеформированного от гидростатического давления пояса резервуара V_{ui} вычисляют по формуле

$$V_{\mathbf{u}i} = \frac{L_{\mathbf{BH}.\mathbf{u}i}^2 h_i}{4\pi \cdot 10^9} \tag{\Gamma.15}$$

где $L_{\text{вн.ц}i}$ - длина внутренней окружности i-го пояса, вычисляемая по формуле (Γ .10);

 h_i - высота *i*-го пояса, вычисляемая по формулам (Г.11);

Г.6.2 Результаты вычислений вместимости V_{ij} вносят в таблицу <u>Д.1</u>, приложения <u>Д</u>.

Г.7 Вычисление поправки к вместимости

 Γ .7.1 Поправку к вместимости резервуара за счет гидростатического давления жидкости V_{ri} при наполнении *i*-го пояса вычисляют по формуле

$$\Delta V_{ri} = A_2 \cdot \left\{ \frac{0.8 h_1}{\delta_1} \left(\sum_{j=1}^i h_j - \frac{h_1}{2} \right) + \sum_{l=2}^{i-1} \left[\frac{h_1}{\delta_1} \left(\sum_{j=1}^{i-1} h_j - \frac{h_1}{2} \right) \right] \right\}$$
 (\Gamma.16)

где h_1 , δ_1 - высота и толщина стенки первого пояса;

 h_l , δ_l - высота и толщина l-го вышестоящего пояса;

і - номер наполненного пояса;

 A_2 - постоянный коэффициент для поверяемого резервуара, вычисляемый по формуле

ФГУП «ВНИИР» Страница 29 из 35

$$A_2 = \frac{g \cdot \rho_{\text{XX}} \cdot L_{\text{BH.II}}^2}{4 \cdot 10^{12} \cdot \pi^2 \cdot E} \tag{\Gamma.17}$$

где g - ускорение свободного падения, м/с ($g = 9,8066 \text{ м/c}^2$);

 $\rho_{\text{ж.x}}$ - плотность хранимой жидкости;

 $L_{\text{вн. u}}$ - длина внутренней окружности первого пояса, вычисляемая по формуле (Γ .3);

E - модуль упругости материала, Па, (для стали $E=2,1\times 10^{11}$ Па).

- Γ .7.2 Все пояса резервуара разбивают на участки высотой, равной примерно 1 м. В этом случае индекс i означает номер участка.
- Γ .7.3 При наличии ребер жесткости по <u>9.2.5</u> поправку к вместимости резервуара вычисляют по формуле (Γ .20) с учетом замедления деформации участка пояса с ребром жесткости.
- Γ .7.4 Результаты вычислений ΔV_{ri} для уровней наполнения от 3 м заносят в таблицу $\underline{\Pi}$.3 приложения $\underline{\Pi}$.

Г.8 Вычисление вместимости резервуара

 Γ .8.1 Вместимость резервуара, соответствующую уровню жидкости H, $V_{\rm H}$ вычисляют по формуле

$$V_{\rm H} = \sum_{i=1}^{n} V_{{\rm u}i} + V_{{\rm M.II.}} + \Delta V_{ri}$$
 (\Gamma.18)

где *n* - число наполненных поясов резервуара;

Примечание - Вместимость последнего частично наполненного пояса вычисляют по фактической высоте его наполнения.

ФГУП «ВНИИР» Страница 30 из 35

приложение д

Форма журнала обработки результатов измерений при поверке геометрическим методом

ЖУРНАЛ

обработки результатов измерений при поверке геометрическим методом

Д.1 Вычисление длины наружной окружности первого пояса

$$L_{\rm H} = ... = {\rm MM}$$
.

Д.2 Вычисление длины внутренней окружности первого пояса:

$$L_{\rm BH} = ... = MM; L_{\rm BH.II} = ... = MM.$$

Д.3 Вычисление длин внутренних окружностей вышестоящих поясов Таблица Д.1

Номер пояса	Точка из- мерения	Номер образующего резервуара			$a_{\mathrm{cp}i}$	$\Delta R_{{ m cp}i}$	$L_{{\scriptscriptstyle m BH}i}$	$L_{{\scriptscriptstyle extbf{BH}},\Pi i}$	$V_{{ m u}i}$	
	7	1	2		m					
1	$^{3}/_{4}h_{1}$									
2	Н									
	С									
	В									
i	Н									
	С						:			
	В									
Верхний	Н									
	С									

Д.4 Вычисление базовой высоты

$$H_6 = ... \text{ MM}.$$

Д.5 Вычисление исходного уровня

$$H_{\mu} = ... MM.$$

Д.6 Вычисление вместимости «мертвой» полости

Таблица Д.2

Обозначение		Значение для номера окружности							
величины	0	1	2	3	4	5	6	7	8
$\sum b_{ji}$									
$\sum (b_{ji} - b_{(j-1)i})$									

$$H_{M.\Pi} = ... MM; (DV_{JH})_0 = ... M^3;$$

$$H_0 = ... \text{ MM};$$

$$H_0' = ... M.$$

Д.7 Вычисление поправки к вместимости пояса резервуара за счет гидростатического давления жидкости

Таблица Д.3

Номер пояса	Номер участка	Высота участка,	Уровень напол-	$\Delta V_{{\scriptscriptstyle \Gamma}i}$, M	
	томер у шетки	MM	нения, мм	Δ/ η, Μ	
1	1	1000	-	-	

ФГУП «ВНИИР» Страница 31 из 35

Номер пояса	яса Номер участка Высота участка, Уровень напол-		$\Delta V_{{\scriptscriptstyle \Gamma}i}$, м	
	2	1100	-	-
2	3	900	3000	0,623
	4	900	3900	1,173
3	5	1200	5100	1,783
	6	1300	6400	2,492

Д.8 Составление градуировочной таблицы

Таблица Д.4

Уровень заполнения, см	Вместимость, м ³	Коэффициент вместимости, m^3/mm^4)
<i>Н</i> _{м.п} ¹	508,502 ²⁾	1,068
$H_{\text{M}.\Pi} + 1$	519,183	1,066
$H_{M.\Pi} + 2$	529,844	
	•••	
$H_{\text{M.\Pi}} + 50^3$	1030,722	1,019
Н _{м.п} + 51	1040,912	•••
•••	•••	
H_{\max}		

¹⁾ Уровень жидкости в резервуаре, измеренный через измерительный люк от точки касания днища грузом рулетки.

4) Коэффициент вместимости, равный

 $(519,183 - 508,502)/10 = 1,068 \text{ m}^3/\text{mm}.$

Вычисления провел	
подпись,	инициалы, фамилия
« <u> </u>	r.

ФГУП «ВНИИР» Страница 32 из 35

²⁾ Вместимость «мертвой» полости.

³⁾ Уровень всплытия плавающего покрытия.

приложение Е

(ОБЯЗАТЕЛЬНОЕ)

Форма титульного листа градуировочной таблицы и форма градуировочной таблицы

Е.1 Форма титульного листа градуировочной таблицы¹⁾

к.1 Форма титульн	юго листа градуирово	АДИЦОВТ ИОНРО	
1) Форма титульного	листа градуировочной	і́ таблицы не подлежит	изменению УТВЕРЖДАЮ
	ГРАДУИРОВОЧ	НАЯ ТАБЛИЦА	у гры ждано
на nesengyan стальн	• •	ндрический казематны	й (с зашитной стен-
na posepajap eranan	ко	-	(
TI			
Организация			
		твенных учетных и т	
		етов между поставщико	
используется			
Программа расчета	градуировочной табли	цы на ПЭВМ утвержде	на ГНМЦ - ВНИИР
	«»	Γ.	
Срок очередной по	оверки		
			Поверители
			подпись
		должность	, инициалы, фамилия
			подпись
		должность	, инициалы, фамилия
			подпись
		должность	, инициалы, фамилия
Е.2 Форма градуир	овочной таблицы ²⁾		
	очной таблицы не подл	ежит изменению	
Резервуар №			
Таблица К.1 - По	сантиметровая вмести	мость пояса резервуара	
Лист			
Уровень наполнения,	Вместимость, м ³	Уровень наполнения,	Вместимость, м ³
СМ	DMCCIMMOCIB, M	СМ	Divice I five of B, W
$H_{\scriptscriptstyle{M}.\Pi}$			

ФГУП «ВНИИР» Страница 33 из 35

Уровень наполнения, см	Вместимость, м ³	Уровень наполнения, см	Вместимость, м ³
$H_{\text{м.п}} + 1$			
$H_{\text{M.II}} + 1$ $H_{\text{M.II}} + 2$			

Таблица К.2 - Средняя вместимость пояса резервуара в пределах вместимости, приходящейся на 1 см высоты наполнения

Уровень	Вместимость,	Уровень	Вместимость,	Уровень	Вместимость,
наполнения, м	M^3	наполнения, м	M ³	наполнения, м	M ³
1		4		7	
2		5		8	
3		6		9	

ФГУП «ВНИИР» Страница 34 из 35

БИБЛИОГРАФИЯ

- [1] ТУ 257761.007-87 Толщиномер ультразвуковой УТ-93П
- [2] ТУ ДКТЦ 41344.1.1.102 Анализатор-течеискатель АНТ-3. Технические условия
- [3] РД-03-20-2007 Положение об организации обучения и проверки знаний рабочих организаций, поднадзорных федеральной службе по экологическому, технологическому и атомному надзору.
- [4] Приказ Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» (Зарегистрировано в Минюсте России 04.09.2015 № 38822)

ФГУП «ВНИИР» Страница 35 из 35