Согласовано

Генеральный директор

AO WHITO WETTARKIN

П.Н. Рыбкин

2017 г.

Утверждаю

Директор

ФГУП «ВНИИМ им. Д.И. Менделеева»

К. В. Гоголинский

₩ 06 2017 г.

-

УСТАНОВКИ ПОВОРОТНЫЕ МАЛОГАБАРИТНЫЕ МПУ-8

Методика поверки СПАН.402111.009 МП

Руководитель

научно-исследовательского отдела

ФГУП «ВНИИМ им. Д. И. Менделеева»

А.А. Янковский

2017 г.

Оглавление

ВВЕДЕНИЕ	. 3
1 ОПЕРАЦИЯ ПОВЕРКИ	. 4
2 СРЕДСТВА ПОВЕРКИ	. 4
3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	. 5
4 УСЛОВИЯ ПОВЕРКИ	. 5
5 ПРОВЕДЕНИЕ ПОВЕРКИ	. 6
5.1 Внешний осмотр	. 6
5.2 Проверка комплектности и маркировки	. 6
5.3 Подтверждение соответствия программного обеспечения	. 6
5.4 Определение относительной погрешности воспроизведений	
угловой скорости	. 7
5.5 Проверка диапазона воспроизведений угловой скорости	12
5.6 Определение нестабильности угловой скорости в пределах одного	
оборота	12
5.7 Определение разности угловых скоростей при вращении по часовой	
и против часовой стрелки	12
6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	13
ПРИЛОЖЕНИЕ А.	14
пист регистрации изменений	17

ВВЕДЕНИЕ

1.1 Настоящая методика поверки распространяется на установки поворотные малогабаритные МПУ-8 (далее по тексту – установки) и устанавливает объём и порядок проведения поверки (первичной и периодической).

Интервал между поверками – 2 года.

- 1.2 Перед началом работы необходимо ознакомиться с настоящей методикой, эксплуатационной документацией на установки, средства измерений и оборудования, используемые при проведении поверки.
- 1.3 Методика поверки допускает проведение поверки в диапазоне угловых скоростей, заявленных потребителем, с обязательным указанием в свидетельстве о поверке информации об объёме проведённой поверки.
- 1.4 При положительном результате поверки рекомендуется оформлять протокол в соответствии с приложением A.

1 ОПЕРАЦИЯ ПОВЕРКИ

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции при проведении поверки.

	Номер пункта	Обязательность проведения операции при поверке					
Наименование операции	методики	Первичной	Периодической				
1	2	3	4				
1. Внешний осмотр	5.1	Да	Да				
2. Проверка комплектности и маркировки	5.2	Да	Да				
3. Подтверждение соответствия программного обеспечения	5.3	Да	Да				
4. Определение относительной погрешности воспроизведений угловой скорости	5.4	Да	Да ¹⁾				
5. Проверка диапазона воспроизведений угловой скорости	5.5	Да	Да				
6. Определение нестабильности угловой скорости в пределах одного оборота	5.6	Да	Нет				
7. Определение разности угловых скоростей при вращении по часовой и против часовой стрелки	1	Да	Да				
8. Оформление результатов поверки.	6	Да	Да				
Примечание:1) При проведении периодической поверки допускается определить							

Примечание: 1) При проведении периодической поверки допускается определить относительную погрешность воспроизведений угловой скорости только для вертикальной оси вращения.

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки должны применяться средства измерений, указанные в таблице 2, имеющие свидетельства о поверке с неистекшим сроком действия.

Таблица 2 – Перечень средств измерений.

Номер	Наименование средства	Основные метрологические				
пункта МП	поверки и его тип	характеристики				
5.4, 5.5, 5.7	Фототахометр электронный	Диапазон измерений от 20 до				
	«TESTO 465»	99999 об/мин. Допускаемая				
		относительная погрешность ±0,05% (рег.				
		№ 48431-11)				
5.4, 5.5, 5.7	Секундомер электронный	Диапазон измерений от 0 до 9 ч 59 мин.				
	«Интеграл С-01»	Допускаемая основная абсолютная				
		погрешность при температуре 25±5 °C:				

Номер	Наименование средства	Основные метрологические
пункта МП	поверки и его тип	характеристики
		$\pm (9,6\cdot 10^{-6}\cdot T_x + 0,01)$, где T_x – значение
		измеренного интервала времени, с.
		(per. № 44154-10)
5.4-5.7	Рабочий эталон 1 разряда	Диапазон измерений от 0 до 360°.
	единицы плоского угла при	Доверительная погрешность δ (при
	угловом перемещении	доверительной вероятности 0,95) ± 0,3"
	твёрдого тела в диапазоне	
	от 0 до 360°.	
5.4-5.7	Частотомер электронно-	Диапазон измеряемых частот от 0 Гц до
	счётный 53131А.	250 МГц, пределы допускаемой
		погрешности ±5·10 ⁻⁶ (Рег. № 26211-03)
5.4 - 5.7	Гигрометры	Диапазон измерений температуры от
	психрометрические ВИТ	плюс 15 до плюс 40, пределы допускаемой
		абсолютной погрешности измерений
		температуры ±0,2°С, диапазон измерений
		относительной влажности от 40 до 90 %,
		пределы допускаемой абсолютной
		погрешности измерений относительной
		влажности ±6 % (рег. № 42453-09).

Допускается применение других средств измерений, обеспечивающих определение метрологических характеристик поверяемой установки с требуемой точностью, со свидетельствами о поверке с неистекшим сроком действия.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 При поверке должны соблюдаться правила безопасности в соответствии с указаниями руководства по эксплуатации (РЭ) и эксплуатационных документов применяемых средств поверки.
- 3.2 К поверке допускаются лица, изучившие эксплуатационную документацию на установку и прошедшие инструктаж по технике безопасности.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1 При проведении поверки должны быть соблюдены следующие условия:
 - температура окружающего воздуха, °C

20±5

- относительная влажность воздуха, %

60±15

4.2 При подготовке поверки вспомогательное К поверке, средства И быть подготовлены соответствии оборудование должны С указаниями эксплуатационной документации.

5 ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено отсутствие механических повреждений на корпусе установки.

5.2 Проверка комплектности и маркировки

При проверке комплектности должно быть установлено её соответствие перечню, приведённому в эксплуатационной документации на установку.

При проверке маркировки должно быть установлено наличие информационной таблички на корпусе поворотного блока установки.

- 5.3 Подтверждение соответствия программного обеспечения Проверка встроенного программного обеспечения (ПО):
- 5.3.1 Подготовить установку к работе.
- 5.3.2 Включить установку. При помощи кнопок управления войти в главное меню и выбрать пункт «СВЕДЕНИЯ» «ВЕРСИЯ ПО». Сравнить идентификационные данные встроенного ПО, отображённые на дисплее установки, с идентификационными данными, приведёнными в паспорте.

Проверка автономного программного обеспечения (ПО):

- 5.3.3 Нажать правой клавишей «мыши» по ярлыку программы «Управление МПУ8» на рабочем столе персонального компьютера (после инсталляции). В открывшемся списке выбрать пункт меню «Свойства» и в раскрывшемся окне на вкладке «Ярлык» перейти по пути размещения исполняемого файла. Нажать правой клавишей «мыши» по значку исполняемого файла и выбрать в открывшемся списке пункт меню «Свойства». В открывшемся окне выбрать вкладку «Подробно» и проконтролировать версию автономного ПО. Сравнить номер версии автономного ПО, отображаемый на мониторе ПК, с приведённым в паспорте изделия.
- 5.3.4 Для подсчёта идентификатора автономного ПО по алгоритму MD5 запустить программу «MD5 & SHA Checksum Utility», находящуюся в папке с исполняемым файлом программы «Управление МПУ-8», нажать кнопку "browse" в открывшемся окне и выбрать проверяемый файл (исполняемый файл программы «Управление МПУ-8», см. п. 5.3.3), в результате напротив надписи «md5» в окне программы будет сгенерирован цифровой идентификатор автономного ПО. Сравнить цифровой идентификатор автономного ПО с приведённым в паспорте изделия.

Установка считается прошедшей поверку по пункту 5.3, если полученные идентификационные данные встроенного и автономного ПО (номер версии и цифровой идентификатор ПО) соответствуют идентификационным данным, приведённым в разделе 1 паспорта СПАН.402111.009 ПС.

- 5.4 Определение относительной погрешности воспроизведений угловой скорости
- 5.4.1 Определение относительной погрешности воспроизведений угловой скорости с использованием рабочего эталона 1 разряда единицы плоского угла при угловом перемещении твёрдого тела в диапазоне от 0 до 360°.
- 5.4.1.1 Руководствуясь эксплуатационной документацией установки подготовить её к работе в режиме воспроизведений угловой скорости в горизонтальном положении (ось вращения направлена вертикально).
- 5.4.1.2 Подключить поворотный блок установки к сети переменного напряжения 220 В.
- 5.4.1.3 Установить рабочий эталон 1 разряда единицы плоского угла при угловом перемещении твёрдого тела в диапазоне от 0 до 360° (далее по тексту эталон) на поворотную платформу установки в соответствии с эксплуатационной документацией эталона.
- 5.4.1.4 Подготовить эталон к работе в режиме воспроизведений угловой скорости.
- 5.4.1.5 Подключить частотомер к эталону (при измерении в диапазоне от 0,03 до 0,3 °/с включительно подключение произвести к сигналу последовательности импульсов, в диапазоне от 0,3 до 150 °/с подключение произвести к сигналу с нулевой метки). Установить режим работы частотомера в режим измерений периода.
- 5.4.1.6 Задать первое значение угловой скорости поворотной платформы установки в соответствии с таблицей 2 и нажать кнопку «CTAPT».
- 5.4.1.7 Провести измерения периода вращения поворотной платформы не менее 3-х раз. Полученный результат занести в таблицу 3.
- 5.4.1.8 Выполнить пункт 5.4.1.7 для всех значений угловых скоростей $(\Omega_{\rm зад})_k$, приведённых в таблице 3.

Таблица 3 – Результаты измерений угловой скорости.

k	$(\Omega_{3 a \mu})_k$, °/с	Т _{изм.} ., с.			$\overline{(\Omega_{{\scriptscriptstyle H3M}})_{\scriptscriptstyle K}},{}^{\circ}/{c}$	$\overline{\delta(\Omega_{{\scriptscriptstyle HSM}})_{\scriptscriptstyle K}},\%$
		i=1	i=2	i=3		
1	0,03					
2	0,05	•				
3	0,1					
4	0,3					
5	0,6					
6	1					
7	3					
8	6					
9	10					
10	20					
11	30					

k	$(\Omega_{\rm зад})_k$, °/с	Т _{изм.} ., с.			$\overline{(\Omega_{{\scriptscriptstyle MSM}})_{\scriptscriptstyle K}}$, °/c	$\overline{\delta(\Omega_{{\scriptscriptstyle H3M}})_{\scriptscriptstyle K}}$, %
		i=1	i=2	i=3		
12	40	<u>.</u>				
13	50					
14	60	• • • •				
15	70					
16	80					
17	90					
18	100					
19	110					
20	120					
21	130					
22	140					
23	150					

5.4.1.9 Вычислить значение измеренной угловой скорости по формуле 1:

$$\Omega_{\mathsf{M3M},i} = \frac{360}{\mathsf{T}_{\mathsf{M3M}\,i}}\tag{1}$$

где $T_{\text{изм},i}$ – результат измерений периода вращения, с; i – номер измерения.

По результатам измерений определить среднее значение угловой скорости по формуле:

$$\overline{(\Omega_{\mathsf{MSM}})_{\mathsf{K}}} = \frac{1}{3} \sum_{i=1}^{3} \Omega_{\mathsf{MSM},i}, \tag{2}$$

5.4.1.10 Для каждого заданного значения определить относительную погрешность воспроизведений угловой скорости по формуле 3:

$$\overline{\delta(\Omega_{\text{\tiny M3M}})_{\text{\tiny K}}} = \frac{((\Omega_{\text{\tiny 3aA}})_{\text{\tiny K}} - \overline{(\Omega_{\text{\tiny M3M}})_{\text{\tiny K}}})}{\overline{(\Omega_{\text{\tiny M3M}})_{\text{\tiny K}}}} \cdot 100$$
 (3)

где $\overline{(\Omega_{\rm изм})_{\rm K}}$ - среднее значение угловой скорости, определённое по формуле 2, $(\Omega_{\rm зад})_{\rm K}$ - значение угловой скорости, воспроизведённое установкой.

5.4.1.11 Определить значение относительной погрешности воспроизведений угловой скорости по формуле 4:

$$\delta(\Omega_{\text{воспр}}) = \max \overline{(\delta(\Omega_{\text{изм}})_{\text{к}}}$$
 (4)

- 5.4.1.12 Выполнить операции пунктов 5.4.1.3 5.4.1.11 для противоположного направления вращения поворотной платформы установки.
- 5.4.1.13 Установить поворотный блок установки так, чтобы ось вращения была направлена горизонтально и выполнить пункты 5.4.1.1 5.4.1.12.

- 5.4.2 Определение относительной погрешности воспроизведений угловой скорости с использованием фототахометра электронного «TESTO 465» и секундомера электронного «Интеграл C-01».
- 5.4.2.1 Руководствуясь эксплуатационной документацией установки подготовить её к работе в режиме воспроизведений угловой скорости в горизонтальном положении (ось вращения направлена вертикально).
- 5.4.2.2 Подключить поворотный блок установки к сети переменного напряжения 220 В и включить установку.
- 5.4.2.3 По нанесённым рискам измерить текущее значение углового положения поворотной платформы установки.
- 5.4.2.4 Задать первое значение угловой скорости поворотной платформы установки в соответствии с таблицей 4.
- 5.4.2.5 Нажать на поворотном блоке установки кнопку «СТАРТ» и одновременно с этим запустить секундомер.
- 5.4.2.6 Провести измерение временного интервала ($(t_{\text{изм.}})_{\kappa}$), за которое поворотная платформа совершит полный оборот и вернётся в начальное положение, соответствующее углу, измеренному в п. 5.4.2.3.
- 5.4.2.7 Выполнить измерения в соответствии с пунктами 5.4.2.3 5.4.2.6 для угловых скоростей, приведённых в таблице 4.

Таблица 4 – Результаты измерений угловой скорости в диапазоне от 0,03 до 10 °/с.

k	$(\Omega_{ m 3aд})_k$,	Вращен	ие по часово	ой стрелке	Вращение против часовой стрелки		
	°/c	$(t_{\text{\tiny M3M.}})_{\text{\tiny K}}$, C	$(\Omega_{\text{изм}})_{\text{K}}$, °/C	$\delta(\Omega_{{\scriptscriptstyle ИЗM}})_{\scriptscriptstyle K},\%$	$(t_{\text{изм.}})_{\text{к}}$, С	$(\Omega_{\text{\tiny M3M}})_{\text{\tiny K}}$, °/c	$\delta(\Omega_{{\scriptscriptstyle H3M}})_{\scriptscriptstyle K}$, %
1	0,03						
2	0,05						
3	0,1						
4	0,3						
5	0,6						
6	1						
7	3				. ,		
8	6						
9	10						

5.4.2.8 Вычислить значение измеренной угловой скорости ($(\Omega_{\mbox{\tiny ИЗМ}})_{\mbox{\tiny K}},$ °/c) по формуле 5:

$$\left(\Omega_{\text{M3M}}\right)_{\text{K}} = \frac{360}{\left(t_{\text{M3M}}\right)_{\text{K}}}\tag{5}$$

где к - номер измерения.

5.4.2.9 Нанести оптическую метку (из комплекта фототахометра электронного «TESTO 465») на край поворотной платформы в соответствии с рисунком 1.

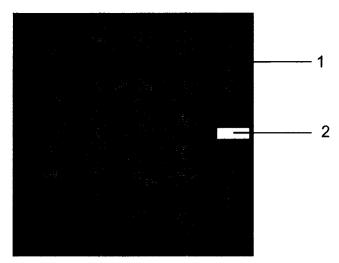


Рисунок 1– Расположение оптической метки на поворотной платформе. 1 - поворотная платформа, 2 – оптическая метка.

5.4.2.10 Задать первое значение угловой скорости поворотной платформы установки в соответствии с таблицей 5 и нажать на кнопку «СТАРТ».

Таблица 5 – Результаты измерений угловой скорости в диапазоне от 20 до 150 °/с

k	$(\Omega_{ m 3ад})_k$, °/с	Вращен	ие по часов	ой стрелке	Вращение против часовой стрелки		
		f _{cp} , мин ⁻¹	$(\Omega_{\text{изм}})_{\text{K}}$, °/c	$\delta(\Omega_{{\scriptscriptstyle MSM}})_{\scriptscriptstyle K},\%$	f _{cp} , мин ⁻¹	$(\Omega_{\text{изм}})_{\text{K}}$, °/c	$\delta(\Omega_{{\scriptscriptstyle {\rm H3M}}})_{{\scriptscriptstyle { m K}}},\%$
10	20						
11	30						
12	40						
13	50						
14	60						
15	70						
16	80						
17	90						
18	100						
19	110						***************************************
20	120						
21	130						
22	140						
23	150						

5.4.2.11 Включить фототахометр электронный «TESTO 465» однократным нажатием на центральную кнопку. Нажать и удерживая центральную кнопку тахометра провести измерение частоты вращения поворотной платформы (схема проведения эксперимента представлена на рисунке 2).

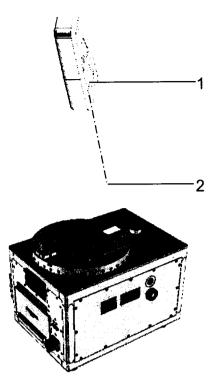


Рисунок 2 – Определение погрешности воспроизведений угловой скорости с использованием фототахометра электронного «TESTO 465». 1 - фототахометр электронный «TESTO 465», 2 - оптическая метка.

- 5.4.2.12 Нажать кнопку «СТОП» на поворотном блоке установки после того, как платформа совершит двадцать полных оборотов.
- 5.4.2.13 Последовательно нажимая на кнопку «MEM» фототахометра электронного «TESTO 465», вывести среднее значение измерений (f_{cp}, мин⁻¹).
- 5.4.2.14 Выполнить измерения в соответствии с пунктами 5.4.2.10 5.4.2.13 для угловых скоростей, приведённых в таблице 5.
- 5.4.2.15 Вычислить значение измеренной угловой скорости ($(\Omega_{_{\rm ИЗМ}})_{_{\rm K}}, {}^{\circ}$ /c) по формуле 6:

$$(\Omega_{\text{\tiny M3M}})_{\text{\tiny K}} = 6 \cdot f_{\text{cp}} \tag{6}$$

5.4.2.16 Определить относительную погрешность воспроизведений угловой скорости ($\delta(\Omega_{_{\rm ИЗМ}})_{\kappa}$, %) для всех значений угловой скорости, приведённых в таблицах 3 и 4 по формуле 7:

$$\delta(\Omega_{_{\mathsf{ИЗM}}})_{_{\mathsf{K}}} = \frac{((\Omega_{_{\mathsf{3AJ}})_{\mathsf{K}}} - (\Omega_{_{\mathsf{ИЗM}}})_{_{\mathsf{K}}})}{(\Omega_{_{\mathsf{NЗM}}})_{_{\mathsf{K}}}} \cdot 100 \tag{7}$$

где $(\Omega_{\mbox{\tiny ИЗM}})_{\mbox{\tiny K}}$ - измеренное значение угловой скорости;

 $(\Omega_{
m sag})_{
m k}$ - значение угловой скорости, воспроизведённое установкой.

5.4.2.17 Определить максимальное значение относительной погрешности воспроизведений угловой скорости по формуле 8:

$$\delta(\Omega_{\text{воспр}}) = \max \delta(\Omega_{\text{изм}})_{\kappa} \tag{8}$$

5.4.2.18 Выполнить операции пунктов 5.4.2.3 – 5.4.2.17 для противоположного направления вращения поворотной платформы установки.

5.4.2.19 Выключить установку и отключить поворотный блок установки от сети переменного напряжения.

Установка считается прошедшей поверку по пункту 5.4, если значение относительной погрешности воспроизведений угловой скорости не превышает 1 %.

5.5 Проверка диапазона воспроизведений угловой скорости

При выполнении требований пункта 5.4 МП за рабочий диапазон воспроизведений угловой скорости принять диапазон \pm (0,03 – 150) °/с.

Установка считается прошедшей поверку по пункту 5.5, если при выполнении требований пункта 5.4, диапазон воспроизведений составляет ± (0,03 – 150) °/с.

- 5.6 Определение нестабильности угловой скорости в пределах одного оборота
- 5.6.1 Поместить поворотный блок установки на рабочую поверхность и выставить в горизонтальном положении (ось вращения направлена вертикально), руководствуясь эксплуатационной документацией установки.
- 5.6.2 Подключить поворотный блок установки к сети переменного напряжения 220 В и включить установку.
- 5.6.3 Установить эталон на поворотную платформу установки в соответствии с эксплуатационной документацией эталона.
 - 5.6.4 Подключить эталон к ПК.
- 5.6.5 Задать значение угловой скорости поворотной платформы установки равное 0,03 °/с и нажать кнопку «СТАРТ».
- 5.6.6 Используя специализированное ПО эталона, провести запись выходного сигнала с эталона на одном обороте через 20 с.
- 5.6.7 По результатам измерений определить мгновенное значение угловой скорости по формуле 9:

$$\Delta\Omega_{\text{M3M,i}} = \frac{\alpha_{i+1} - \alpha_i}{20} \tag{9}$$

где $(\alpha_{i+1} - \alpha_i)$ – угловое перемещение поворотной платформы установки за время 0,1 с.

4.6.8 Определить нестабильность угловой скорости по формуле 10

$$\delta\Omega_{\text{HeCT},} = \frac{(max|\Delta\Omega_{\text{M3M},i} - \Omega_{\text{3ag}}|)}{\Omega_{\text{3ag}}} \cdot 100 \tag{10}$$

где $\Omega_{\text{зад}}$ – заданное значение угловой скорости.

Установка считается прошедшей испытания по пункту 5.6 МП, если нестабильность угловой скорости не превышает

- 2 % в диапазоне угловых скоростей от 0,03 до 0,05 вкл. °/с;
- 1 % в диапазоне угловых скоростей свыше 0,05 до 150 вкл. °/с.
- 5.7 Определение разности угловых скоростей при вращении по часовой и против часовой стрелки
- 5.7.1 По результатам измерений пункта 5.4 определить разность угловых скоростей при вращении по часовой и против часовой стрелки по формуле 11

$$\delta\Omega_{\text{разн.}} = max(\frac{((\Omega_{\text{изм,пр}})_{\text{K}} - (\Omega_{\text{изм,лев.}})_{\text{K}})}{(\Omega_{\text{зал.}})_{\text{K}}} \cdot 100)$$
 (11)

Установка считается прошедшей поверку по пункту 5.7, если максимальное значение разности угловых скоростей при вращении по часовой и против часовой стрелки не превышает 1 %.

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 6.1 При положительных результатах поверки, проведённой в соответствии с настоящей методикой, оформляется протокол поверки и выдаётся свидетельство о поверке. Знак поверки наносится на информационную табличку поворотного блока установки.
- 6.2 При отрицательных результатах поверки установка к применению не допускается и на неё оформляется извещение о непригодности.

ПРИЛОЖЕНИЕ А.

Протокол периодической поверки установки поворотной малогабаритной МПУ-8

Обозначение – МПУ-8, зав.№Владелец :
Условия поверки:
Температура окружающего воздуха°С.
Относительная влажность воздуха %.
Результаты поверки:
1 Внешний осмотр:
2 Проверка комплектности и маркировки
3 Подтверждение соответствия программного обеспечения

4 Определение относительной погрешности воспроизведений угловой скорости Таблица 1 – Результаты измерений угловой скорости в диапазоне от 0,03 до 10 °/с при вертикальной оси вращения

k	$(\Omega_{\rm зад})_k$, °/с	Вращен	ие по часов	ой стрелке	Вращение против часовой стрелки			
	,	t _{изм.} , с.	$(\Omega_{\text{изм}})_{\kappa}$, °/c	$\delta(\Omega_{\text{изм}})_{\text{к}}$, %	$t_{\scriptscriptstyle extsf{M3M.}}$, С.	$(\Omega_{изм})_{K}$, °/c	$\delta(\Omega_{{\scriptscriptstyle H3M}})_{\scriptscriptstyle K},\%$	
1	0,03							
2	0,05							
3	0,1							
4	0,3							
5	0,6							
6	1							
7	3							
8	6							
9	10				_			

$$(\Omega_{\text{изм}})_{\text{K}} = \frac{360}{t_{\text{изм.}i}}$$
$$\delta(\Omega_{\text{изм}})_{\text{K}} = \frac{((\Omega_{\text{зад}})_{\text{K}} - (\Omega_{\text{изм}})_{\text{K}})}{(\Omega_{\text{изм}})_{\text{K}}} \cdot 100$$

Таблица 2 – Результаты измерений угловой скорости в диапазоне от 20 до 150 °/с при вертикальной оси врашения

k	$(\Omega_{3ад})_k$, °/с	Вращен	ие по часов	ой стрелке	Вращение против часовой стрелки		
		f _{cp} , мин ⁻¹	$(\Omega_{\text{изм}})_{\text{K}}$, °/C	$\delta(\Omega_{{\scriptscriptstyle M3M}})_{{\scriptscriptstyle K}},\%$	f _{cp} , мин ⁻¹	$(\Omega_{\text{изм}})_{\kappa}$, °/c	$\delta(\Omega_{{\scriptscriptstyle H3M}})_{\scriptscriptstyle K},\%$
10	20						
11	30						
12	40						
13	50						
14	60						
15	70						
16	80						
17	90						
18	100			·	. .		
19	110						
20	120						
21	130						
22	140						
23	150						

$$\begin{split} &(\Omega_{\text{изм}})_{\text{K}} = 6*f_{\text{cp}} \\ &\delta(\Omega_{\text{изм}})_{\text{K}} = \frac{((\Omega_{\text{зад}})_{\text{K}} - (\Omega_{\text{изм}})_{\text{K}})}{(\Omega_{\text{изм}})_{\text{K}}} \cdot 100 \\ &\delta(\Omega_{\text{воспр}}) = \max &\delta(\Omega_{\text{изм}})_{\text{K}} \end{split}$$

Таблица 3 – Результаты измерений угловой скорости в диапазоне от 0,03 до 10 °/с при горизонтальной оси вращения

k	$(\Omega_{\rm зад})_k$, °/с	Вращен	ие по часов	ой стрелке	Вращение против часовой стрелки		
		t _{изм.} , с.	$(\Omega_{\text{изм}})_{\text{к}}$, °/c	$\delta(\Omega_{{\scriptscriptstyle M3M}})_{{\scriptscriptstyle K}},\%$	t _{изм.} , с.	$(\Omega_{\text{изм}})_{\text{K}}$, °/C	$\delta(\Omega_{{\scriptscriptstyle ИЗM}})_{\scriptscriptstyle K},\%$
1	0,03				-		
2	0,05						
3	0,1						
4	0,3						
5	0,6						
6	1						
7	3						
8	6						
9	10						

$$\begin{split} &(\Omega_{\text{изм}})_{\text{K}} = \frac{360}{t_{\text{изм.}i}} \\ &\delta(\Omega_{\text{изм}})_{\text{K}} = \frac{((\Omega_{\text{зад}})_{\text{K}} - (\Omega_{\text{изм}})_{\text{K}})}{(\Omega_{\text{изм}})_{\text{K}}} \cdot 100 \end{split}$$

Таблица 4 – Результаты измерений угловой скорости в диапазоне от 20 до 150 °/с при

горизонтальной оси вращения

$k \mid (\Omega_{3aд})_k$, °/c Вращение по часовой стрелке Вращение против часовой стрелки											
k	$ (\Omega_{ exttt{зад}})_k,{}^{ m e}/{ m c} $	Вращен	ие по часов	ой стрелке	Вращение против часовой стрелки						
		f_{cp} , мин $^{-1}$	$(\Omega_{\text{\tiny M3M}})_{\text{\tiny K}}$, °/c	$\delta(\Omega_{{\scriptscriptstyle ИЗM}})_{\scriptscriptstyle K},\%$	f _{ср} , мин ⁻¹	$(\Omega_{\scriptscriptstyle {\rm M3M}})_{\scriptscriptstyle { m K}},{}^{\circ}/{ m C}$	$\delta(\Omega_{{\scriptscriptstyle M3M}})_{\scriptscriptstyle K},\%$				
10	20										
11	30										
12	40	_			-						
13	50						* -				
14	60										
15	70										
16	80										
17	90	i									
18	100										
19	110										
20	120										
21	130										
22	140										
23	150				1 200						

$$\begin{split} &(\Omega_{\rm изм})_{\rm K} = 6*f_{\rm cp} \\ &\delta(\Omega_{\rm изм})_{\rm K} = \frac{((\Omega_{\rm зад})_{\rm K} - (\Omega_{\rm изм})_{\rm K})}{(\Omega_{\rm изм})_{\rm K}} \cdot 100 \\ &\delta(\Omega_{\rm воспр}) = \max \delta(\Omega_{\rm изм})_{\rm K} \\ &5 \; \text{Проверка нестабильности угловой скорости в пределах одного оборота} \\ &\delta\Omega_{\rm нест,} = \frac{(max|\Delta\Omega_{\rm изм,i} - \Omega_{\rm зад}|)}{\Omega_{\rm зал}} \cdot 100 = \end{split}$$

6 Проверка разности угловых скоростей при вращении по часовой и против часовой стрелки

$$δΩ$$
{разн.} = $max(\frac{((Ω{изм,пр})_{κ}-(Ω_{изм,лев.})_{κ})}{(Ω_{зад..})_{κ}} \cdot 100)$ =

7 Заключение: для эксплуатации

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	H	омера лист	ов (страі	ниц)	Всего листов (страни ц) в докум.	№ докум.	Входя- щий № сопрово- дитель- ного докум. и дата		
Изм.	изме- нен- ных	Заме- ненных	Новых	Аннули- рован- ных				Подп.	Дата
								<u>-</u>	
								·	
	_								
									:
							_		