ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ ВНИИМС

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «НЭТ» (ООО «РЗП»)

Измерительные каналы

Методика поверки

МП 206.1-228-2017

Содержание

Cip.
3
4
6
7
8
10
11
11
12
18
19

1 ОБЩИЕ ПОЛОЖЕНИЯ

Настоящая методика распространяется на измерительные каналы (далее - ИК) системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «НЭТ» (ООО «РЗП»), (далее – АИИС КУЭ), заводской номер 001, предназначенной для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени отдельными технологическими объектами ООО «НЭТ», сбора, хранения, обработки и передачи полученной информации. Выходные данные системы могут использоваться для коммерческих расчетов.

Поверке подлежит каждый ИК АИИС КУЭ, реализующий косвенный метод измерений электрической энергии. ИК подвергают поверке покомпонентным (по-элементным) способом с учетом положений раздела 8 ГОСТ Р 8.596-2002.

Первичную поверку системы выполняют после проведения испытаний АИИС КУЭ с целью утверждения типа. Допускается совмещение операций первичной поверки и операций, выполняемых при испытаниях типа. Периодическую поверку системы выполняют в процессе эксплуатации, после ремонта системы, замены её измерительных компонентов, аварий в энергосистеме, если эти события могли повлиять на метрологические характеристики ИК АИИС КУЭ. Измерительные компоненты АИИС КУЭ поверяют с интервалами между поверками, установленными при утверждении их типа. Если очередной срок поверки измерительного компонента наступает до очередного срока поверки АИИС КУЭ, поверяется только этот компонент и поверка АИИС КУЭ не проводится.

После поверки измерительного компонента и восстановления ИК выполняется проверка ИК в той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой измерительного компонента, не нарушили метрологических свойств ИК (схема соединения, коррекция времени и т.п.). Допускается подвергать поверке только те ИК, которые подверглись указанным выше воздействиям, при условии, что собственник АИИС КУЭ подтвердит официальным заключением, что остальные ИК этим воздействиям не подвергались. В этом случае оформляется свидетельство о поверке системы с пе-

речнем поверенных ИК.

Допускается проведение поверки отдельных ИИК АИИС КУЭ, с обязательным указанием в приложении к свидетельству о поверке информации об объеме проведенной поверки.

Перечень ИК АИИС КУЭ приведен в паспорт-формуляре.

Интервал между поверками АИИС КУЭ – 4 года.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использовались ссылки на следующие нормативные документы:

Приказ Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Общие положения».

ГОСТ Р 4.199-85 «СПКП. Системы информационные электроизмерительные. Комплексы измерительно-вычислительные. Номенклатура показателей».

ГОСТ Р 51321.1-2007 «Устройства комплектные низковольтные распределения и управления. Часть 1. Устройства, испытанные полностью или частично. Общие технические требования и методы испытаний».

ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки».

МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения $6\sqrt{3}...35$ кВ. Методика проверки на месте эксплуатации».

ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ Р 52323-2005 (МЭК 62053-22:2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические

счетчики активной энергии классов точности 0,2S и 0,5S.

ГОСТ Р 52425-2005 (МЭК 62053-23:2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения».

ГОСТ 12.2.003-91 «Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности».

ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности».

ГОСТ 12.2.007.3-75 «Система стандартов безопасности труда. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности».

РМГ 51-2002 «ГСИ. Документы на методики поверки средств измерений. Основные положения».

МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения $6\sqrt{3}$...35 кВ. Методика проверки на месте эксплуатации».

Правила по охране труда при эксплуатации электроустановок. 2014 г.

3 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1 – Операции поверки

	Номер	Обязательность проведения	
Наименование операции	пункта	операции при	
	НД по	первичной	периодиче-
	поверке	поверке	ской поверке
1	2	3	4
1. Подготовка к проведению поверки	8	Да	Да
2. Внешний осмотр	9.1	Да	Да
3. Поверка измерительных компонен-	9.2	Да	Да
тов АИИС КУЭ	7.2	ди	Α"
4. Проверка счетчиков электрической	9.3	Да	Да
энергии	7.5	A.	<u> </u>
5. Проверка функционирования цен-			
тральных компьютеров (серверов)	9.4	Да	Да
АИИС КУЭ и УСПД			
6. Проверка функционирования вспо-	9.5	Да	Да
могательных устройств			
7. Проверка нагрузки на вторичные			
цепи измерительных трансформато-	9.6	Да	Да
ров тока			
8. Проверка нагрузки на вторичные			
цепи измерительных трансформато-	9.7	Да	Да
ров напряжения			

Продолжение таблицы 1

1	2	3	4
9. Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиков.	9.8	Да	Да
10. Проверка погрешности часов компонентов системы	9.9	Да	Да
11. Проверка отсутствия ошибок информационного обмена	9.10	Да	Да
12. Идентификация программного обеспечения	10	Да	Да
13. Оформление результатов поверки	11	Да	Да

4 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют основные средства измерений, эталоны и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а так же следующие средства поверки:

- Термогигрометр «CENTER» (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C; диапазон измерений относительной влажности от 10 до 100 %;
- Радиочасы «МИР РЧ-01», принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS);
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками и с ПО для работы с радиочасами «МИР РЧ-01»;
- -Миллитесламетр портативный универсальный ТПУ: диапазон измерений магнитной индукции от 0,01 до 19,99 мТл.;
 - Измеритель потерь напряжения CA 210. Примечания.

- 1. Допускается применение других средств поверки с метрологическими характеристиками, обеспечивающими требуемые точности измерений.
- 2. Все средства измерений, применяемые при поверке, должны быть утвержденного типа и иметь действующие свидетельства о поверке. Эталоны должны быть аттестованы и иметь действующие свидетельства об аттестации.

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 5.1 К проведению поверки АИИС КУЭ допускают работников организаций, аккредитованных в области обеспечения единства измерений на право поверки СИ в порядке, установленном законодательством РФ об аккредитации в национальной системе аккредитации, изучивших настоящую методику поверки и формуляр АИИС КУЭ, имеющих опыт работы по поверке измерительных систем. Для выполнения отдельных операций поверки допускаются работники, удовлетворяющие требованиям, приведенным в п.п. 5.2 5.8.
- 5.2 Определение погрешности часов компонентов АИИС КУЭ и отсутствия ошибок информационного обмена осуществляется работниками, имеющими опыт работы в области измерений электрических величин, изучившими вышеуказанные документы, а также руководство пользователя по работе с радиочасами «МИР РЧ-01», принимающими сигналы спутниковой навигационной системы Global Positioning System (GPS).
- 5.3 Поверка трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется поверителями средств измерений электрических величин организаций, аккредитованных на право поверки СИ в установленном законодательством РФ об аккредитации в национальной системе аккредитации порядке, изучившими документ ГОСТ 8.217-2003. «Трансформаторы тока. Методика поверки» и допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок.
 - 5.4 Поверка трансформаторов напряжения, входящих в состав АИИС КУЭ,

осуществляется поверителями средств измерений электрических величин организаций, аккредитованных на право поверки СИ в порядке, установленном законодательством РФ об аккредитации в национальной системе аккредитации, изучившими документ ГОСТ 8.216-2011. «Трансформаторы напряжения. Методика поверки» и/или МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения 6√3...35 кВ. Методика проверки на месте эксплуатации» и допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок.

- 5.5 Поверка счетчиков, входящих в состав АИИС КУЭ, осуществляется поверителями средств измерений электрических величин организаций, аккредитованных на право поверки СИ в порядке, установленном законодательством РФ об аккредитации в национальной системе аккредитации, изучившими документ, содержащий методику поверки счетчиков, и допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок.
- 5.6 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется работниками, допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок и изучившими применяемый при поверке документ, содержащий методику измерений вторичной нагрузки измерительных трансформаторов тока.
- 5.7 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется работниками, допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок и изучившими применяемый при поверке документ, содержащий методику измерений вторичной нагрузки измерительных трансформаторов напряжения.
- 5.8 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется работниками, допущенными к производству указанных работ в соответ-

ствии с правилами по охране труда при эксплуатации электроустановок и изучившими применяемый при поверке документ, содержащий методику выполнения измерений параметров нагрузки и вторичных цепей трансформаторов тока и напряжения.

внимание.

При проведении поверочных и измерительных работ должны присутствовать работники объекта, на котором размещены компоненты АИИС КУЭ, имеющие опыт работы и право на подключение и отключение эталонных и поверяемых средств измерений в соответствии со схемой поверки или с методикой измерений.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75, «Правилами техники безопасности при эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей», «Правилами по охране труда при эксплуатации электроустановок», а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.
- 6.2 Эталонные средства измерений, вспомогательные средства поверки и оборудование должны соответствовать требованиям ГОСТ 12.2.003-91, ГОСТ 12.2.007.3-75, ГОСТ 12.2.007.7-75.
- 6.3 Все оперативные отключения и включения должны проводиться руководителем работ в соответствии с программой проведения работ, утвержденной в установленном порядке.

7 УСЛОВИЯ ПОВЕРКИ

Условия поверки АИИС КУЭ должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.

8 ПОДГОТОВКА К ПОВЕРКЕ

- 8.1 Для проведения поверки представляют следующие копии документов:
- руководство пользователя АИИС КУЭ;
- паспорт-формуляр;
- описание типа АИИС КУЭ;
- свидетельств о поверке измерительных компонентов, входящих в ИК, и свидетельство о предыдущей поверке системы (при периодической и внеочередной поверке);
 - паспорта-протоколы на ИК;
- рабочие журналы АИИС КУЭ с данными по климатическим и иным условиям эксплуатации за интервал между поверками (только при периодической поверке);
- акты, подтверждающих правильность подключения счетчиков к цепям тока и напряжения;
- акты, подтверждающих правильность подключения вторичных обмоток
 TT;
- акты, подтверждающих правильность подключения первичных и вторичных обмоток ТН.
- 8.2 Перед проведением поверки на месте эксплуатации АИИС КУЭ выполняют следующие подготовительные работы:

- проводят организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими правилами и ПУЭ;
- проводят организационно-технические мероприятия по доступу поверителей и персонала энергообъектов к местам установки измерительных трансформаторов, счетчиков электроэнергии, серверу АИИС КУЭ для проведения работ по п.п. 9.1, 9.3, 9.4, 9.5;
- организуют рабочее место для поверителя, для проведения работ по п.п. 9.2, 9.6, 9.7, 9.8.

9 ПРОВЕДЕНИЕ ПОВЕРКИ

9.1 Внешний осмотр

- 9.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений компонентов АИИС КУЭ, наличие поверительных пломб и клейм на измерительных компонентах.
- 9.1.2 Проверяют размещение измерительных компонентов, наличие шильдиков и маркировку компонентов, правильность схем подключения трансформаторов тока и напряжения к счетчикам электрической энергии; правильность прокладки проводных линий по проектной документации на АИИС КУЭ.
- 9.1.3 Проверяют соответствие типов и заводских номеров фактически использованных измерительных компонентов типам и заводским номерам, указанным в паспорте-формуляре АИИС КУЭ.
- 9.1.4 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

При обнаружении несоответствий по п. 9.1 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.2 Поверка измерительных компонентов АИИС КУЭ

9.2.1 Проверяют наличие свидетельств о поверке и срок их действия для

всех измерительных компонентов АИИС КУЭ. При обнаружении просроченных свидетельств о поверке измерительных компонентов или свидетельств, срок действия которых близок к окончанию, дальнейшие операции по поверке ИК, в который они входят, выполняют после поверки этих измерительных компонентов.

При обнаружении несоответствий по п. 9.2.1 дальнейшие операции по поверке ИК прекращаются и выписывается извещение о непригодности АИИС КУЭ.

9.3 Проверка счетчиков электрической энергии

- 9.3.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на счетчике и испытательной коробке. Проверяют наличие оригиналов актов, подтверждающих правильность подключения счетчиков к цепям тока и напряжения, в частности, правильность чередования фаз.
- 9.3.2 Проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.
- 9.3.3 Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Преобразователь подключают к любому последовательному порту переносного компьютера. Опрашивают счетчик по установленному соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком.
- 9.3.4 Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптопорт.

При обнаружении несоответствий по п. 9.3 дальнейшие операции по поверке ИК прекращаются, и выписывается извещение о непригодности АИИС КУЭ.

9.4 Проверка функционирования центральных компьютеров (серверов) АИИС КУЭ

9.4.1 Проверяют защиту программного обеспечения на центральных компьютерах (серверах) АИИС КУЭ от несанкционированного доступа. Для этого

запускают на выполнение программу сбора данных и в поле "пароль" вводят неправильный код. Проверку считают успешной, если при вводе неправильного пароля программа не разрешает продолжать работу.

- 9.4.2 Проверяют работу аппаратных ключей. Выключают компьютер и снимают аппаратную защиту (отсоединяют ключ от порта компьютера). Включают компьютер, загружают операционную систему и запускают программу. Проверку считают успешной, если получено сообщение об отсутствии «ключа защиты».
 - 9.4.3 Проводят опрос текущих показаний всех счетчиков электроэнергии.
- 9.4.4 Проверяют глубину хранения измерительной информации в центральных компьютерах (серверах) АИИС КУЭ.
- 9.4.8 Проверяют правильность значений коэффициентов трансформации измерительных трансформаторов, хранящихся в памяти сервера БД.

При обнаружении несоответствий по п. 9.4 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.5 Проверка функционирования вспомогательных устройств

9.5.1 Проверка функционирования модемов

Проверяют функционирование модемов, используя коммуникационные возможности специальных программ. Модемы считаются исправными в составе комплекса, если были установлены коммутируемые соединения и по установленным соединениям успешно прошел опрос счетчиков.

Допускается автономная проверка модемов с использованием тестового программного обеспечения.

9.5.2 Проверка функционирования адаптеров интерфейса

Используя кабель RS232 подключают к адаптерам переносной компьютер с ПО. Проверка считается успешной, если удалось опросить все счетчики, подключенные к данному адаптеру.

При обнаружении несоответствий по п. 9.5 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непри-

9.6 Проверка нагрузки вторичных цепей измерительных трансформаторов тока

- 9.6.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на клеммных соединениях, имеющихся на линии связи ТТ со счетчиком. Проверяют наличие оригиналов актов, подтверждающих правильность подключения вторичных обмоток ТТ.
- 9.6.2 Проверяют наличие данных измерений мощности нагрузки вторичных цепей ТТ по МИ 3196-2009 «Государственная система обеспечения единства измерений вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений» с оформлением паспортов-протоколов по форме Приложения 11.3 к Положению о порядке получения статуса субъекта оптового рынка ведения реестра субъектов оптового рынка (далее Приложение 11.3) АО «АТС». Срок проведения ревизии ИК, а также утверждения паспортовпротоколов должен быть не более 1 года до момента проведения поверки.

При обнаружении несоответствий по п. 9.6 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.7 Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения

- 9.7.1 Проверяют наличие и сохранность пломб поверительных и энергосбытовых организаций на клеммных соединениях, имеющихся на линии связи ТН со счетчиком. Проверяют наличие оригиналов актов, подтверждающих правильность подключения первичных и вторичных обмоток ТН.
- 9.7.2 Проверяют наличие данных измерений мощности нагрузки вторичных цепей ТН по МИ 3195-2009 «Государственная система обеспечения единства измерений мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений» с оформлением паспортов-протоколов по

форме Приложения 11.3 AO «ATC». Срок проведения ревизии ИК, а также утверждения паспортов-протоколов должен быть не более 1 года до момента проведения поверки.

При обнаружении несоответствий по п. 9.7 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.8 Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиков

Проверяют наличие данных измерений падения напряжения U_{π} в проводной линии связи для каждой фазы по утвержденному документу «Методика выполнения измерений параметров нагрузки и вторичных цепей трансформаторов тока и напряжения прибором «Энерготестер ПКЭ» в условиях эксплуатации с оформлением паспортов-протоколов по форме Приложения 11.3 АО «АТС». Паспортапротоколы должны быть оформлены не ранее, чем за 1 год до проведения поверки ИК. Падение напряжения не должно превышать 0,25 % от номинального значения на вторичной обмотке ТН.

При обнаружении несоответствий по п. 9.8 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.9 Проверка погрешности часов компонентов системы

9.9.1 Проверка СОЕВ

Включают радиочасы «МИР РЧ-01», принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), и сверяют показания радиочасов с показаниями часов сервера, получающего сигналы точного времени от УСВ-3. Расхождение показаний радиочасов с сервером не должно превышать ±1 с. Для снятия синхронизированных измерений рекомендуется использовать одновременное фотографирование экранов поверяемого и поверительного оборудования.

9.9.2 Распечатывают журнал событий счетчика, выделив события, соответствующие сличению часов счетчика и сервера. Расхождение времени часов: счетчик – сервер БД в момент, предшествующий коррекции, не должно превышать предела допускаемого расхождения ±2 с.

При обнаружении несоответствий по п. 9.9 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.10 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального компьютера (сервера БД).

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

- 9.10.1 На центральном компьютере (сервере БД) системы распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30-ти минутным интервалом и профиль нагрузки за полные предшествующие дню проверки сутки по всем ИК. Проверяют наличие данных, соответствующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента системы.
- 9.10.2 Распечатывают журнал событий счетчика и сервера и отмечают моменты нарушения связи между измерительными компонентами системы. Проверяют сохранность измерительной информации в памяти центральных компьютерах (серверах) системы на тех интервалах времени, в течение которого была нарушена связь.
- 9.10.3 Используя переносной компьютер, считывают через оптопорт профиль нагрузки за полные предшествующие дню проверки сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящей-

ся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и базе данных центрального компьютера (сервера БД) полученные по п. 9.10.2 не должно превышать двух единиц младшего разряда учтенного значения.

9.10.4 Рекомендуется вместе с проверкой по п. 9.10.3 в реальном режиме времени сличить показания счетчика по активной и реактивной электрической энергии строго в конце получаса (часа) с данными, зарегистрированными в центральном компьютере (сервере БД) системы для того же момента времени. Для этого визуально или с помощью переносного компьютера через оптопорт считывают показания счетчика по активной и реактивной электрической энергии и сравнивают эти данные (с учетом коэффициентов трансформации измерительных трансформаторов), с показаниями зарегистрированными в центральном компьютере (сервере БД) системы. Расхождение не должно превышать две единицы младшего разряда.

При обнаружении несоответствий по п. 9.10 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

10 ИДЕНТИФИКАЦИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 10.1 Проводится проверка соответствия заявленных идентификационных данных программного обеспечения указанных в описании типа:
 - наименование программного обеспечения;
 - идентификационное наименование программного обеспечения;
 - номер версии (идентификационный номер) программного обеспечения;
- цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода);
- алгоритм вычисления цифрового идентификатора программного обеспечения.
 - 10.2 Идентификация ПО СИ реализуется следующими методами:
- с помощью ПО СИ или аппаратно-программных средств, разработанных организацией разработчиком СИ (ПО СИ);

 с использованием специальных протестированных (аттестованных, сертифицированных) аппаратно-программных средств и/или протестированного (аттестованного, сертифицированного) ПО.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

11.1 На основании положительных результатов по пунктам раздела 9 выписывают свидетельство о поверке АИИС КУЭ в соответствии с Приказом Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». В приложении к свидетельству указывают перечень ИК.

11.2 При отрицательных результатах поверки хотя бы по одному из пунктов методики поверки АИИС КУЭ признается негодной к дальнейшей эксплуатации и на нее выдают извещение о непригодности в соответствии с Приказом Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» с указанием причин.

Начальник отдела 206.1 ФГУП «ВНИИМС» С.Ю. Рогожин

Начальник сектора 206.1/1 ФГУП «ВНИИМС» М.В. Гришин