ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители светового коэффициента пропускания автомобильных стекол «Свет»

Назначение средства измерений

Измеритель светового коэффициента пропускания автомобильных стекол «Свет» (далее по тексту - прибор) предназначен для измерений светового коэффициента пропускания автомобильных стекол толщиной от 3 до 6 мм в диапазоне длин волн 380÷780 нм в соответствии с ГОСТ 27902-88 и ГОСТ 5727-88.

Описание средства измерений

Принцип действия прибора основан на измерении в относительных единицах величины светового потока, пропускаемого стеклом, относительно общего падающего светового потока.

Прибор представляет собой переносной комплект, состоящий из узла фотоприемника, узла излучателя и аккумулятора.

Источником светового потока является лампа накаливания типа ОП 6,3-0,22. Приемником светового потока служит фотодиод ФД 263-01, перед которым установлен светофильтр СЗС-21, корректирующий диапазон спектральной чувствительности фотоприемника в видимой области спектра. Сигнал с фотоприемника через усилитель поступает на аналоговый вход микроконтроллера. Микроконтроллер с помощью встроенного аналого-цифрового модуля преобразует аналоговый сигнал с фотоприемника и далее выполняет цифровую обработку в соответствии с программой, записанной в его постоянную энергонезависимую память. Результаты измерений отображаются на цифровом индикаторе.

Порядок определения светопропускания стекла прибором предусматривает две основные операции:

-«калибровка» т.е. определение светового потока (Фо), попадающего на фотоприемник при непосредственном (без контролируемого стекла) совмещении узла излучателя с узлом фотоприемника, который принимается за значение светового потока при 100%-м светопропускании;

-«измерение» т.е. определение светового потока (Φx), ослабленного тестируемым стеклом, установленным между излучателем и фотоприемником.

Световой коэффициент пропускания тестируемого стекла (Т) в процентах автоматически определяется по формуле (1):

$$T,\% = \Phi x \cdot 100/\Phi_0 \tag{1}$$

В начале процессов выполнения операций «калибровка» и «измерение» автоматически производится измерение величины внешней засветки, которые вычитаются из величин Фо и Фх соответственно. Данная операция минимизирует влияние внешних факторов на точность измерений.

Питание прибора осуществляется от входящего в состав аккумулятора или от аккумулятора автомобиля через прикуриватель.

Прибор содержит схему индикации разряда аккумулятора. При снижении напряжения на аккумуляторе до величины 10,5 В световой индикатор начинает мигать с частотой 1-2 Гц. Для зарядки аккумулятора типа FG-20121, входящего в состав прибора, служит зарядное устройство ИЭВ8-1215. Время заряда разряженного аккумулятора составляет 2 часа.

От несанкционированного доступа к элементам схемы корпус прибора защищается наклейкой, перекрывающей один из винтов крепления крышки корпуса фотоприемника.

Общий вид прибора и схема пломбирования от несанкционированного доступа приведены на рисунках 1 - 3.

Рисунок 1 - Общий вид прибора в рабочем положении

- 1. Узел фотоприемника
- 3. Узел излучателя

- 2. Аккумулятор
- 4. Контролируемое стекло

Рисунок 2 - Общий вид излучателя и фотоприемника

- 1. Индикатор результата измерения
- 3. Клавиатура управления
- 5. Фотоприемник

- 2. Индикатор включения питания
- 4. Место знака утверждения типа
- 6. Излучатель

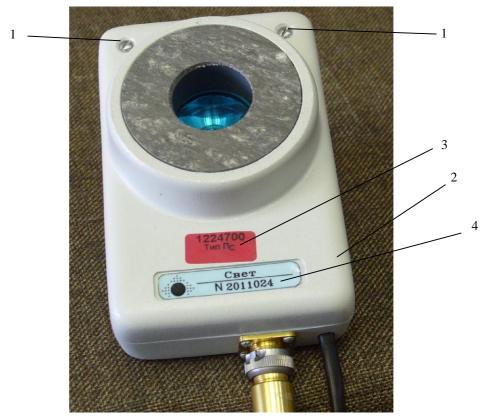


Рисунок 3 - Размещение пломбирующей наклейки

- 1. Винт крепления крышки 3 шт.
- 3. Пломбирующая наклейка, закрывающая один из винтов крепления крышки
- 2. Крышка фотоприемника
- 4. Наклейка (шильдик)
- с наименованием и заводским номером прибора

Программное обеспечение

Прибор функционирует под управлением микроконтроллера, используется встроенное программное обеспечение (ПО).

ПО состоит из единого модуля, выполняющего следующие функции:

- -опрос клавиатуры;
- -анализ разряда аккумулятора;
- -оцифровку аналогового сигнала с фотодатчика;
- -вычисление результата измерения;
- -вывод результата измерения на цифровой индикатор.

Доступ пользователя к встроенному программному обеспечению исключен конструктивным исполнением прибора.

Идентификационные данные программного обеспечения представлены в таблице 1.

Таблица 1

Наименование	Идентификационное	Номер версии	Цифровой	Алгоритм
программного	наименование	(идентификаци-	идентификатор	вычисления
обеспечения	программного	онный номер)	программного	цифрового
	обеспечения	программного	обеспечения	идентификатора
		обеспечения	(контрольная	программного
			сумма	обеспечения
			исполняемого	
			кода)	
ПО «СВЕТ»	ИЯКФ.466.439.007ПО	ИЯКФ.466.439.0	8E17	CRC-16
		07-01 ПО		

Метрологически значимая часть ПО размещается в энергонезависимой памяти микроконтроллера, запись которой осуществляется в процессе производства. Доступ к микроконтроллеру исключён конструкцией аппаратной части прибора. Модификация ПО возможна только на предприятии-изготовителе прибора.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

приведены в таблице 2.

Таблина 2

тиолици 2		
Наименование характеристики	Значение характеристики	
Диапазон измерений светового коэффициента пропускания, %	от 1 до 99	
Пределы допускаемой абсолютной погрешности	±2	
измерений светового коэффициента пропускания, %		
Толщина тестируемого стекла, мм	от 3 до 6	
Напряжение питания, В	от 10,5 до 14,5	
Потребляемая мощность, Вт, не более	3,6	
Время работы от аккумулятора, ч, не менее	200	
Габаритные размеры, мм, не более		
- излучатель	63´63´90	
- фотоприемник	110′70′50	
- аккумулятор типа GS 1.2-12	50′ 50′ 100	
Масса прибора в комплекте с аккумулятором, кг, не более	1,4	
Рабочие условия эксплуатации:		
- температура окружающей среды, °С	от минус 40 до плюс 40	
- относительная влажность воздуха при 25 °C, %, не более	98	
Средняя наработка на отказ, час, не менее	80000	
Средний срок службы, лет	10	

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации УШ2.770.002 РЭ типографским способом, а также на поверхность корпуса фотоприемника, используя технологию трафаретной печати.

Комплектность средства измерений

Состав комплекта прибора представлен в таблице 3.

Таблица 3

	Обозначение	
Наименование изделия (составной части, документа)	конструкторского	Количество, шт.
	документа	
Измеритель светового коэффициента пропускания ав-	УШ2.770.002	1
томобильных стекол «Свет», в том числе:		
-аккумулятор НА 12B (типа GS 1.2-12);		1
-кабель к аккумулятору;		1
-кабель к прикуривателю;	УШ4.854.667	1
-зарядное устройство ИЭВ8-1215;	УШ4.854.588	1
-сумка поясная;		1
-поверочное кольцо;	УШ6.251.010	1
-руководство по эксплуатации (с методикой поверки);	УШ2.770.002 РЭ	1
-упаковка.	УШ4.175.292	1

Поверка

осуществляется по документу УШ2.770.002 РЭ «Измеритель светового коэффициента пропускания автомобильных стекол «Свет». Руководство по эксплуатации», раздел 4 «Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИОФИ» 31 мая 2011 г.

Основные средства поверки:

Комплект светофильтров КС-102 (ГР № 9117-83)

Основные метрологические характеристики:

Рабочий диапазон длин волн: от 400 до 750 нм; рабочий диапазон светового коэффициента пропускания: от 2 до 92 %; пределы допускаемого значения абсолютной погрешности измерений светового коэффициента пропускания: ± 1 %

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к измерителям светового коэффициента пропускания автомобильных стекол «Свет»

«Измеритель светового коэффициента пропускания автомобильных стекол «Свет». Технические условия» ТУ 4381-001-23540064-2000

Изготовитель

Акционерное общество «Научно-исследовательский институт промышленного телевидения «Растр» (АО «НИИПТ «Растр»)

173001, Россия, Великий Новгород, ул. Большая Санкт-Петербургская, д.39

Тел./факс (8162) 77-43 31, 77-41 -06

E-mail: market@rastr.natm.ru; www.rastr.natm.ru

Испытательный центр

Государственный центр испытаний средств измерений федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт оптикофизических измерений» (ГЦИ СИ ФГУП «ВНИИОФИ»)

Адрес: 119361, Москва, ул. Озерная, 46

Телефон: (495) 437-56-33; факс: (495) 437-31-47

E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИОФИ» по проведению испытаний средств измерений в целях утверждения типа № 30003-08 от 30.12.2008 г.

Заместитель	
Руководителя Федерального	
агентства по техническому	
регулированию и метрологии	

С.С. Голубев «____ » _____2017 г.

М.п.