ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии электронные многофункциональные серии SL7000 (ACE 7000, ACE 8000)

Назначение средства измерений

Счетчики электрической энергии электронные многофункциональные серии SL7000 (АСЕ 7000, АСЕ 8000), в дальнейшем – счетчики, представляют собой программируемые электронные приборы, обеспечивающие измерения электрической энергии и мощности, а также мониторинг и контроль параметров электрической сети и напряжения. Счетчики имеют несколько коммуникационных интерфейсов и обладают расширенными функциональными возможностями, позволяющими организовывать многотарифный учет потребления электроэнергии, автоматическое считывание и архивацию данных измерений, в том числе в составе автоматизированных систем коммерческого учета энергоресурсов.

Счетчик может быть запрограммирован для работы в трех- или четырехпроводных сетях прямого или трансформаторного включения.

Описание средства измерений

Счетчики серии SL7000 (ACE 7000, ACE 8000) представляют собой измерительную систему, размещенную в корпусе трехфазного счетчика электроэнергии, а вводы и выводы, коммуникационные интерфейсы (оптические, стандарта МЭК 62056 и электрические RS-232 и RS-485) прибора обеспечивают обмен данными по стандартным протоколам.

Счетчики выполняют измерения и вычисления параметров энергопотребления, в т.ч. измерение энергии, расчет максимума нагрузки и запись графиков нагрузки по 8 каналам. В памяти прибора хранятся архивные наборы данных измерений, а в специальном «электронном журнале» – до 5000 записей о диагностических и др. событиях изменения параметров сети и качества электроэнергии.

В составе счетчиков имеются быстродействующие аналого-цифровые преобразователи (АЦП) и микропроцессор, обеспечивающий вычисление измеряемых величин и управление режимами работы прибора. Измерительные цепи напряжения подключены к АЦП через резисторный делитель, а цепи тока - с помощью трансреакторов. Шесть быстродействующих АШП (три на цепи напряжения и три на цепи тока) преобразуют мгновенные значения напряжений и токов в цифровой код, с помощью которого по определенным алгоритмам рассчитываются все измеряемые величины. Величина реактивной энергии рассчитывается для основной гармоники как U·I·sinф, при этом сдвиг фазы на 90° и фильтрация высших гармоник осуществляется цифровым методом в микропроцессоре. Полная энергия рассчитывается из активной и реактивной энергии. С помощью счетчиков можно вести измерения электроэнергии в двух направлениях: прямом и обратном или "Import" и "Export" энергии согласно международному стандарту МЭК 1268. Приборы могут работать в режиме измерений как электрической энергии, так и мощности нагрузки. Для измерений мощности нагрузки используется величина энергии, измеренная за определенный отрезок времени. В качестве дополнительных сервисных функций счетчик может осуществлять индикацию параметров трехфазной электрической сети. Трехфазный модуль питания обеспечивает автоматическую настройку на необходимое рабочее напряжение в диапазоне от 3′54 В до 3′240/415 В и нормальное функционирование счетчиков при отсутствии напряжения одной или двух фаз.

Следует учитывать, что счетчики при изготовлении программируются для работы либо 3-х, либо в 4-х проводных цепях (указывается в спецификации заказчика).

При этом для переключения алгоритма работы измерений счетчика применяется стандартное заводское программное обеспечение "Actaris" AIMS PRO (поставляется со счетчиком бесплатно), таким образом, один и тот же прибор может применяться в различных сетях.

В счетчике могут быть до 6-х импульсных выходов, которые передают импульсы, эквивалентные определенному приращению измеренной энергии, по телеметрическим линиям в сумматор. Счетчик также может иметь до 4-х входов, принимающих телеметрические импульсы от других счетчиков. Он совмещает в себе функции счетчика и сумматора. Расширенный набор внешних устройств, позволяющих осуществлять коммуникацию с другими устройствами, а также встроенные входы/выходы, дополнительные регистры и гибкое программное обеспечение позволяют легко интегрировать счетчики в автоматизированные системы измерений и учета энергии (АСКУЭ) различной структуры. Для коммуникации по оптопорту и электрическим интерфейсам RS-232 и RS-485 используется новая версия стандартного протокола (МЭК 1107) обмена данных DLMS-COSEM (стандарты серии МЭК 62056). Скорость обмена программируется в диапазоне 1200-19200 бит/с. Опрос счетчиков может осуществляться как непосредственно с компьютера, так и с помощью модема. Программное обеспечение «AIMS PRO» для опроса счетчиков разработано для операционной системы WINDOWS и поставляется вместе с прибором по отдельному заказу.

В счетчике имеется кварцевый таймер, позволяющий вести учет энергии по зонам суток с разными тарифами. Приборы имеют мощный тарификационный модуль, позволяющий вести многотарифный учет 10 видов энергии и мощности по независимым тарифным схемам, содержащим до 24 вариантов суточных графиков (16 моментов перехода с тарифа на тариф в сутки) для 8 различных зонных тарифов. В течение года для 100 дней можно запрограммировать особые тарифные схемы.

Для защиты от несанкционированного доступа в программное обеспечение и изменений параметров счетчика на передней панели расположена специальная кнопка с навесной пломбой, без нарушения которой невозможно осуществить запись основных параметров в счетчик. Конструкция счетчиков предусматривает возможность пломбирования корпуса счетчика навесными пломбами с левой и правой стороны после его поверки (защита от несанкционированного изменения его метрологических характеристик), а также предусмотрено отдельное пломбирование крышки клеммной колодки представителем энергонадзора (энергосбыта) для предотвращения несанкционированных вмешательств в схемы включений приборов. Кроме того, защита счетчиков обеспечивается несколькими уровнями паролей для разделения доступа к параметрам и данным, хранящимся в счетчике.

Приборы выпускаются в различных вариантах исполнения, их обозначения представлены в таблице 1.

Таблица 1

^{* (}возможны модификации SL7000, SL761, ACE7000, ACE8000)

1. Тип счетчика: SL761, соответствие стандартам IEC и DIN

2. Схема включения, класс точности:

^{3 -} x проводная, трансформаторная: A = 0.2S, B = 0.5S, C = 1.0

4-x проводная, трансформаторная: $D=0.2S,\,E=0.5S,\,F=1.0\,\,1=1.0$ (прямого включения Імакс = 120 A)

3. Модуль Ввода/Вывода:

А = без платы вводов и выводов.

Полная конфигурация: B = c платой Ввода/Вывода, без эл. порта; c платой Ввода/Вывода и эл. портом: C = RS232 + RS485, D = RS232 + RS232, E = RS485, F = RS232.

Неполная конфигурация: 0 = c платой Ввода/Вывода, без эл. порта; c платой Ввода/Вывода, c эл. портом: 1 = RS485, 2 = RS232.

4. Питание от внешнего источника:

A =отсутствует, $B = 48 \ B \ \Pi T \ и 57 \ B - 415 \ B \ Пер<math>T$, $C = 57 \ B - 415 \ B \ Пер<math>T$

5. Крышки клеммника, резервное питание часов:

Удлиненная, только конденсатор: A(N) = без дополнительной крышки, B(P) = c опломбированной дополнительной крышкой, C(Q) = c неопломбированной дополнительной крышкой.

Удлиненная, конденсатор и батарея : D(R) =без дополнительной крышки, E(S) =с опломбированной дополнительной крышкой, F(T) =с неопломбированной дополнительной крышкой. Обозначения в скобках для стандартной крышки клеммника.

6. Номинальная частота и напряжение (справочно):

 $50~\Gamma$ ц , все счетчики имеют плавную настройку под любое напряжение в диапазоне 3x57/100-3x240/415В

A = 3x57.7/100 B	G = 3x100 B
B = 3x63.5/110 B	H = 3x110 B
C = 3x127/220 B	J = 3x220 B
D = 3x220/380 B	K = 3x380 B
E = 3x230/400 B	L = 3x400 B
F = 3x240/415 B	O = 3x415 B

7. Номинальный ток:

Только для счетчиков трансформаторного	Только для счетчиков прямого
включения:	включения (выделены номи-
	нальные токи для счетчиков с I
	макс 120 А)
A = 1/2 A	G = 5/60 A
B = 1/5 A (недоступно для счетчиков класса 0.2S)	H = 10/60 A
C = 1/10 A (недоступно для счетчиков класса 0.2S)	J = 10/80 A
D = 1,5/6 A (недоступно для счетчиков класса 0.2S)	K = 5/120 A
E = 5/6 A	L = 10/120 A
F = 5/10 A	M = 15/90 A
P = 2,5/10 A (недоступно для счетчиков класса 0.2S)	N = 20/120 A

8. Уровень функциональности и функции мониторинга сети:				
Счетчик	Счетчик	Счетчик		
незапрограммирован,	запрограммирован,	запрограммирован,		
с функциями	без функций	с функциями		
мониторинга:	мониторинга:	мониторинга:		
F = уровень 0	L = уровень 0	R = уровень 0		
G = уровень 1	М = уровень 1	S = уровень 1		
Н = уровень 2	N = уровень 2	Т = уровень 2		
J = уровень 3	Р = уровень 3	U = уровень 3		
К = уровень 4	Q = уровень 4	V = уровень 4		
	Счетчик незапрограммирован, с функциями мониторинга: F = уровень 0 G = уровень 1 H = уровень 2 J = уровень 3	Счетчик Счетчик незапрограммирован, запрограммирован, с функциями без функций мониторинга: мониторинга: F = уровень 0 L = уровень 0 G = уровень 1 M = уровень 1 H = уровень 2 N = уровень 2 J = уровень 3 P = уровень 3		

Фото внешнего вида счетчика с указанием мест пломбировки на Рисунке 1.

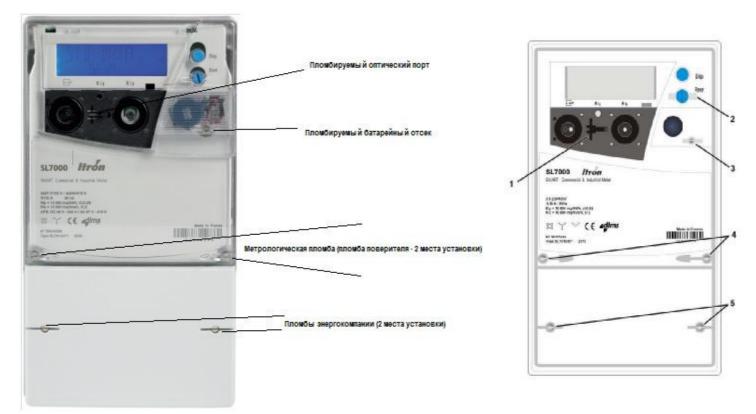


Рисунок 1. Фото внешнего вида счетчика с указанием мест пломбировки

Места установки пломб поверителя и пломб энергокомпании:

- 1. Крышка оптического порта
- 2. Кнопка сброса максимума
- 3. Батарейный отсек
- 4. Корпус счетчика
- 5. Клеммная крышка

Программное обеспечение

Идентификационные данные программного обеспечения (далее – ΠO) счётчиков указаны в таблице 1.

Таблица 1 – идентификационные данные программного обеспечения счетчиков

	Идентифика-	Номер версии	Цифровой иденти-	Алгоритм вычис-
Наименование	ционное на-	(идентификаци-	фикатор программ-	ления цифрового
программного	именование	онный номер)	ного обеспечения	идентификатора
обеспечения	программного	программного	(контрольная сумма	программного
	обеспечения	обеспечения	исполняемого кода)	обеспечения
SL7000	ACE761	5.11A	25622F99	CRC

По своей структуре Π О не разделено на метрологически значимую и метрологически незначимую части, имеет единую контрольную сумму и записывается в устройство на стадии его производства.

Влияние программного продукта на точность показаний счетчиков находится в границах, обеспечивающих метрологические характеристики, указанные в таблице 2. Диапазон представления, длительность хранения и дискретность результатов измерений соответствуют нормированной точности счетчика.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует «среднему» уровню по Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в таблице 2.

Таблица 2 – метрологические и технические характеристики счетчиков

	Tuosinga 2 merposiorii reekile ii rekilir reekile kupuk	T	чение модиф	икаций	
№	б		В – 3-х пр.	А – 3-х пр.	
145	Наименование параметра	F – 4-х пр.	Е – 4-х пр.	D – 4-х пр.	
		1 – пр. вкл.			
1	Класс точности:				
	- по активной энергии по ГОСТ 31819.21-2012,	1,0	0,5S	0,2S	
	ΓOCT 31819.22-2012				
	- по реактивной энергии по ГОСТ 31819.23-2012	2,0	1,0	0,5*	
2	Номинальная частота, Гц,	50			
	Номинальное напряжение, В	3′57/100	, 3′ 220/380, 3	230/400,	
			3´240/415, 3´100, 3´380, 3´400, 3´415		
3	Номинальный ток, А:				
	- для счетчиков трансформаторного включения	1; 5	1; 5	5	
	- для счетчиков прямого включения	5; 10	-	-	
4	Максимальный ток, А:				
	- для счетчиков трансформаторного включения		от 2 до 10		
	- для счетчиков прямого включения	от 60 до 120			
5	Передаточное число, имп/кВт·ч, имп/квар·ч	Программируется. Частота следовани			
		импульсов не может превышать 15 Гц.			
			льность не ме		
6	Потребление по каждой цепи:				
	- тока, B· A 0,1				
	- напряжения, B·A (Bт)		2(1)		

7	Цена единицы разрядов (программируется):			
	- младшего, не менее, кВт-ч	0,001		
	- старшего, не более, кВт-ч	1	100000	
8	Стартовый ток, не хуже, $\%$ от $I_{\text{ном}}$	0,20	0,10	0,05
9	Телеметрические выходы и наличие цифрового	Имп. выходы, и	нтерфейс RS	-232, RS-
	интерфейса	485, оптически	й порт по М	ЭК 1107
10	Интервал усреднения мощности программирует-	(1, 2, 3, 4, 5, 6,	10, 12, 15, 20	, 30, 60)
	СЯ**	·	минут	
11	Пределы допускаемой основной погрешности		±0,5	
	часов, не более, с/сут			
	Пределы допускаемой дополнительной погреш-		±0,05	
	ности часов от температуры, не более, с/сут на °С			
12	Хранение информации при отключении питания,	, 20		
	не более, лет			
13	Время работы таймера без питания:			
	- от батареи		3 года	
	- только от суперконденсатора	,	7 дней	
14	Масса, не более, кг		1,9	
15	Габаритные размеры, (длина; ширина; высота), не	180; 325 (358 не	естандартное	удлине-
	более, мм	ние); 85		
16	Диапазон рабочих температур, °С	от минус 40 до +70		
17	Диапазон температур хранения и транспортиров-	от минус 40 до +70		
	ки, °С			
18	Срок службы литиевой батареи, лет		10	
19	Средний срок службы до капремонта, лет		20	

Примечания:

где d_e - предел допускаемой относительной погрешности по энергии; P - измеренная средняя мощность (κ BT); D - цена единицы младшего разряда индикатора (κ BT).

Допускаемая основная погрешность dд счетчиков реактивной энергии должна соответствовать таблице 3.

Таблица 3

Значение тока для счетчиков	Коэффициент Sinф	Пределы допускаемой основ-
	(при индуктивной	ной погрешности, %, для счет-
включаемых через трансформатор	или емкостной на-	чиков реактивной энергии
	грузке)	класса точности 0,5
0,02 Іном≤І<0,05 Іном	1.00	±1,0
0,05 Іном≤І≤Імакс	1,00	±0,5
0,05 Іном≤І<0,10 Іном	0,50	±1,0
0,10 Іном≤I≤Імакс	0,50	±0,5
	0,25	±1,0

Допускаемая основная погрешность **d**д счетчика реактивной энергии при наличии тока в одной (любой) из последовательных цепей при отсутствии тока в других последовательных цепях при симметричных напряжениях должна соответствовать таблице 4.

Таблина 4

^{*} Требования обеспечения класса точности 0,5 счетчиков при измерении реактивной энергии указаны в таблицах 3-6.

^{**}Расчет пределов относительной погрешности по средней мощности производится по следующей формуле: $d_m = d_e + D^{'} 100\%$ /P,

Значение тока для счетчиков		Пределы основной погрешности, %,
включаемых через трансформатор	Sin φ	для счетчиков класса точности 0,5
0,05Іном≤І<Імакс	1,0	±0,6
0,1Іном≤І≤Імакс	0,5L; 0,5C	±1,0

Дополнительная погрешность (средний температурный коэффициент - %/°К) счетчика реактивной энергии, вызванная изменением температуры окружающего воздуха относительно нормальной, должна соответствовать таблице 5.

Таблица 5

Значение тока для счетчиков		Средний температурный коэффици-
включаемых через трансформатор	Коэффициент	ент, % / К, не более, для счетчиков
	Sin φ	класса точности 0,5
0,05Іном≤І≤Імакс	1,0	±0,03
0,1Іном≤І≤Імакс	0,5L или 0,5C	±0,05

Дополнительная погрешность счетчика реактивной энергии при отклонении напряжения от номинального значения в пределах $\pm 10\%$ должна соответствовать таблице 6.

Таблица 6

Значение тока для счетчиков		Пределы дополнительной погрешно-
включаемых через трансформатор	Коэффициент	сти, %, для
	Sin φ	счетчиков класса точности 0,5
0,02Іном≤І≤Імакс	1,0	±0,2
0,05Іном≤І≤Імакс	0,5L или 0,5C	±0,4

Знак утверждения типа

Знак утверждения типа наносится на передней панели счетчиков и титульных листах эксплуатационной документации методом офсетной печати.

Комплектность средства измерений

Комплект поставки счетчиков электрической энергии электронных многофункциональных серии SL7000 (ACE 7000, ACE 8000) приведен в таблице 7.

Таблица 7 – комплект поставки счетчиков

Наименование	Количество	Примечание
Счетчики электрической энер-	1 шт.	Исполнение соответствует заказу
гии электронные многофункциональные серии SL7000 (ACE 7000, ACE 8000)		
Крышка зажимной коробки	1 шт.	

Паспорт (21478-09 ПС)	1 экз.	
Методика поверки (21478-09	1 экз.	Поставляется по отдельному заказу
МП)		
Коробка упаковочная	1 шт.	Потребительская тара

По требованию организаций, производящих поверку счетчиков, дополнительно высылается методика поверки. По особому заказу поставляется оптическая головка и программное обеспечение "AIMS PRO" для подключения внешних компьютеров для дистанционного считывания показаний счетчиков.

Поверка

осуществляется по документу МП 21478-09 «Счетчики электрической энергии электронные многофункциональные серии SL7000 (АСЕ 7000, АСЕ 8000)». Методика поверки», утвержденному ГЦИ СИ Φ ГУП «ВНИИМС» в 2009 г.

В перечень основного поверочного оборудования входят:

- поверочная установка МК 6800 (МК 68001) или аналогичная с эталонным счетчиком класса точности 0,05.
- универсальная пробойная установка УПУ-10.

Сведения о методиках (методах) измерений

Методика измерений на счетчики электрической энергии электронные многофункциональные серии SL7000 (ACE 7000, ACE 8000) приведена в паспорте (21478-09 ПС).

Нормативные и технические документы, устанавливающие требования к счетчикам электрической энергии электронным многофункциональным серии SL7000 (ACE 7000, ACE 8000)

ГОСТ 31818.11-2012 «Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счётчики электрической энергии».

ГОСТ 31819.21-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счётчики активной энергии классов точности 1 и 2».

ГОСТ 31819.22-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2S и 0.5S».

ГОСТ 31819.23-2012 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».

МЭК 62056-21 "Измерения электрические. Обмен данными для чтения счетчиков, управления тарифами и нагрузкой. Часть 21. Прямой локальный обмен данными".

МЭК 62056-31 "Измерения электрические. Обмен данными для чтения счетчиков, управления тарифами и нагрузкой. Часть 31. Использование локальных сетей с передачей сигналов по витой паре".

МЭК 62056-61 "Измерения электрические. Обмен данными для чтения счетчиков, управления тарифами и нагрузкой. Часть 61. Система идентификации объектов (OBIS)".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при осуществлении торговли.

Заявитель

ООО «Айтрон» 109147, г. Москва, ул. Воронцовская, 17 Тел.: (495) 935-76-26, факс: (495) 935-76-40

Изготовитель

Фирма «Itron France», Франция, Шасно Z.I. du Bernais BP23, 1 Avenue des Temps Modernes, 86361 Chasseneuil du Poitou

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф.В. Булыгин
М.п.	«	»	2014 г.