ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

(в редакциях, утвержденных приказами Росстандарта № 2404 от 20.11.2018 г., № 820 от 15.04.2019 г.)

Счетчики активной и реактивной электрической энергии трехфазные СЕ 304

Назначение средства измерений

Счетчики активной и реактивной электрической энергии трехфазные СЕ 304 (далее по тексту – счетчики) предназначены для измерений активной и реактивной электрической энергии, активной, реактивной и полной мощности, коэффициента мощности, среднеквадратических значений напряжения и силы тока, показателей качества электрической энергии по ГОСТ 32144-2013: коэффициентов искажения синусоидальности кривых напряжения, коэффициентов п-х гармонических составляющих напряжения, коэффициента несимметрии напряжений по обратной последовательности, коэффициента несимметрии напряжений по нулевой последовательности по трем фазам в трехфазных цепях переменного тока и организации многотарифного учета электроэнергии.

Применяются внутри помещений, в местах, имеющих дополнительную защиту от влияния окружающей среды, на промышленных предприятиях и объектах энергетики, а также для передачи по линиям связи информационных данных для автоматизированных информационно-измерительных систем коммерческого учета электроэнергии (АИИС КУЭ).

Описание средства измерений

Принцип действия счетчика основан на преобразовании мгновенных значений входных аналоговых сигналов тока и напряжения шестиканальным аналого-цифровым преобразователем в цифровой код, с последующим вычислением среднеквадратических значений токов и напряжений, активной, реактивной и полной мощности и энергии, углов сдвига фазы и частоты. Реактивная мощность вычисляется геометрическим методом по формуле $Q = \sqrt{S^2 - P^2}$.

Счетчик также имеет в своем составе микроконтроллер, энергонезависимую память данных и встроенные часы реального времени, позволяющие вести учет активной и реактивной электроэнергии по тарифным зонам суток, телеметрические выходы для подключения к системам автоматизированного учета потребленной электроэнергии или для поверки, ЖК-индикатор для просмотра измеряемой информации, клавиатуру с одной пломбируемой кнопкой для защиты от несанкционированного перепрограммирования.

В состав счетчика, в соответствии со структурой условного обозначения, могут входить сменные модули: интерфейсные, импульсные входы, управления нагрузкой и т.д.

Зажимы для подсоединения счетчика к сети и испытательное выходное устройство закрываются пластмассовой крышкой.

Счетчик ведет учет энергии по четырем тарифам в соответствии с сезонными программами смены тарифных зон (количество тарифных зон — до 15, количество сезонных программ — до 12, количество тарифных графиков — до 36). Сезонная программа может содержать суточный график тарификации рабочих дней и альтернативные суточные графики тарификации.

Счетчик обеспечивает учет и вывод на индикацию:

количества потребленной и отпущенной активной электроэнергии нарастающим итогом суммарно и раздельно по четырем тарифам;

количества потребленной и отпущенной реактивной электроэнергии нарастающим итогом суммарно и раздельно по четырем тарифам;

количества потребленной и отпущенной активной электроэнергии потерь в линии электропередачи и силовом трансформаторе (в дальнейшем энергии потерь) нарастающим итогом суммарно и раздельно по четырем тарифам;

количества потребленной и отпущенной активной электроэнергии за текущий и двенадцать прошедших месяцев раздельно по четырем тарифам;

количества потребленной и отпущенной реактивной электроэнергии за текущий и двенадцать прошедших месяцев раздельно по четырем тарифам;

количества потребленной и отпущенной энергии потерь за текущий и двенадцать прошедших месяцев раздельно по четырем тарифам;

количества потребленной и отпущенной активной электроэнергии за текущие и 45 прошедших суток раздельно по четырем тарифам;

количества потребленной и отпущенной реактивной электроэнергии за текущие и 45 прошедших суток раздельно по четырем тарифам;

количества потребленной и отпущенной энергии потерь за текущие и 45 прошедших суток раздельно по четырем тарифам;

активных мощностей, усредненных на заданном интервале времени, в каждом направлении учета электроэнергии;

действующего тарифа и направления электроэнергии (отпуск, потребление);

Дополнительно счетчик обеспечивает измерение и индикацию:

среднеквадратических значений фазных напряжений по каждой фазе в цепях напряжения;

среднеквадратических значений фазных напряжений основной частоты по каждой фазе в цепях напряжения (с ненормируемой точностью);

среднеквадратических значений междуфазных напряжений основной частоты в цепях напряжения (с ненормируемой точностью);

среднеквадратического значения напряжения прямой последовательности (с ненормируемой точностью);

среднеквадратического значения напряжения обратной последовательности (с ненормируемой точностью);

среднеквадратического значения напряжения нулевой последовательности (с ненормируемой точностью);

среднеквадратических значений токов по каждой фазе в цепях тока;

коэффициента несимметрии напряжений по обратной последовательности;

коэффициента несимметрии напряжений по нулевой последовательности;

коэффициентов искажения синусоидальности кривой напряжения по каждой фазе;

коэффициентов n-ных гармонических составляющих напряжения, до 40 гармоники по каждой фазе;

активную мощность по каждой фазе и суммарно;

реактивную мощность по каждой фазе и суммарно;

полную мощность по каждой фазе и суммарно;

активную мощность потерь в линии электропередачи по каждой фазе и суммарно;

активную мощность нагрузочных потерь в силовом трансформаторе по каждой фазе и суммарно;

активную мощность потерь холостого хода в силовом трансформаторе;

углов сдвига фаз между основными гармониками фазных напряжений и токов;

углов сдвига фаз между основными гармониками фазных напряжений;

значений коэффициентов активной и реактивной мощностей (с ненормируемой точностью);

значения частоты сети.

Счетчик обеспечивает возможность задания следующих параметров:

текущего времени и даты;

значения ежесуточной коррекции хода часов;

разрешение перехода на "летнее" время (с заданием месяцев перехода на "зимнее", "летнее" время);

до двенадцати дат начала сезона;

до 15 зон суточного графика тарификации рабочих дней и альтернативных суточных графиков тарификации для каждого сезона;

до тридцати двух исключительных дней (дни, в которые тарификация отличается от общего правила и задается пользователем);

выбор графиков тарификации субботних и воскресных дней;

коэффициентов трансформации тока и напряжения;

параметры для расчета энергии потерь;

пароля для доступа по интерфейсу (до 8 символов);

идентификатора (до 24 символов);

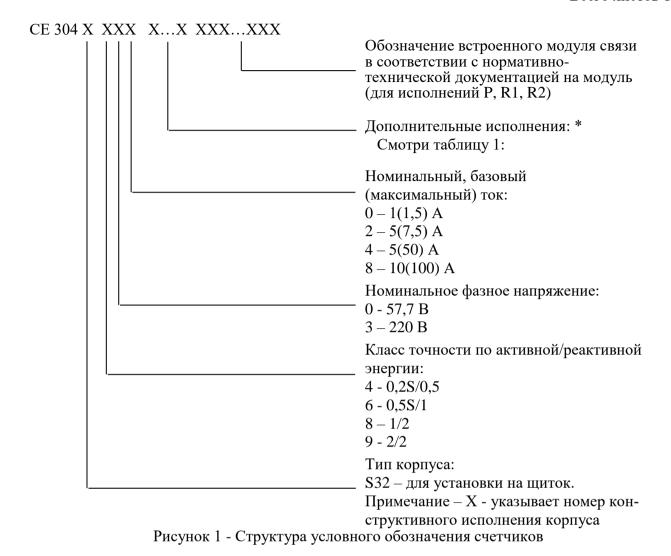
скорости обмена (в т.ч. стартовой);

перечень кадров, выводимых на индикацию.

Счетчик обеспечивает фиксацию не менее 40 последних корректировок времени, изменения уставок временных тарифных зон и перепрограммирования метрологических характеристик счетчика, а также фиксацию не менее 40 последних пропаданий фазных напряжений.

Обмен информацией с внешними устройствами обработки данных осуществляется через оптический порт или IrDA 1.0 и два интерфейса выбираемых при заказе счётчиков из списка: EIA485, EIA232, CAN, GSM, M-Bus, USB, PLC, Радиоинтерфейс.

Обслуживание счетчиков производится с помощью программы «Администрирование устройств".


Оптический интерфейс соответствует стандарту ГОСТ IEC 61107-2011. Интерфейсы EIA485, EIA232, CAN, GSM, M-Bus, USB, PLC, Радиоинтерфейс, IrDA 1.0 соответствуют стандарту ГОСТ IEC 61107-2011 на уровне протокола обмена.

Обмен информацией по оптическому интерфейсу осуществляется с помощью оптической головки, соответствующей ГОСТ IEC 61107-2011.

Обмен информацией по IrDA 1.0 осуществляется с помощью любого устройства, поддерживающего протокол IrDA 1.0 (КПК, ноутбук, ПЭВМ и т.д.).

Структура условного обозначения приведена на рисунке 1.

Фото общего вида счетчиков с указанием схемы пломбировки от несанкционированного доступа приведено на рисунке 2.

Примечание - * Количество символов определяется наличием дополнительных программноаппаратных опций в соответствии с таблицей 1.

Габлица I — модули связи и дополнительные программно-аппаратные опции				
Обозна-	Интерфейс**	Обозна-	Дополнительные программно-	
чение		чение	аппаратные опции**	
A	EIA485	I	IrDA 1.0	
U	USB	J	Оптический интерфейс	
С	CAN	G	GSM модем	
В	M-Bus	V	Контроль вскрытия крышки зажимов и	
			кожуха	
D	Без интерфейсов	Y	2 направления учета	
Е	EIA232	Z	С графическим дисплеем	
Н	ТМ-вход	Q1	Реле управления постоянного тока	
P	PLC-интерфейс	Q2	Реле управления переменного тока	
R1	Радиоинтерфейс со	Q3	Реле управления нагрузкой (поляризо-	
	встроенной антенной		ванное)	
R2	Радиоинтерфейс с разъемом			
	под внешнюю антенну			

Примечание: ** перечень литер обозначающих исполнения модулей связи и дополнительных функций может быть расширен производителем. Описание вновь введенных литер приведено в эксплуатационной документации на счетчики и на сайте производителя. Дополнительные литеры могут быть введены только для функциональности, не влияющей на метрологические характеристики счетчика.

Рисунок 2 – Общий вид счетчика CE 304 S32

Программное обеспечение

Структура программного обеспечения счетчика разделено на метрологически значимую и метрологически незначимую части, имеет контрольную сумму метрологически значимой части и записывается в устройство на стадии его производства.

Влияние ПО на точность показаний счетчиков находится в границах, обеспечивающих метрологические характеристики, указанные в таблице 6. Диапазон представления, длительность хранения и дискретность результатов измерений соответствуют нормированной точности счетчика.

Идентификационные данные ПО счетчиков приведены в таблице 2.

Таблица 2 - идентификационные данные ПО

Идентификационные данные (признаки)		Значение	
Идентификационное наименование ПО	CE 304	CE 304	CE 304
Номер версии (идентификационный номер) ПО	5	6	7
Цифровой идентификатор ПО	E370	84A5	41C7

Уровень защиты ПО от непреднамеренных и преднамеренных изменений высокий в соответствии с P 50.2.077-2014.

Метрологические и технические характеристики

Метрологические харакетристики приведены в таблице 3.

Таблица 3 – Метрологические характеристики

таолица 5 — метрологические характеристики	<u> </u>
Наименование характеристики	Значение
Номинальное напряжение, В	3×57,7/100 или 3×220/380
Номинальный или базовый ток, А	1; 5 или 10
Максимальный ток, А	1,5; 7,5; 50 или 100
Класс точности по ГОСТ 31819.21-2012	1 или 2
Класс точности по ГОСТ 31819.22-2012	0,2S или 0,5S
Класс точности по ГОСТ 31819.23-2012	0,5, 1 или 2*
Погрешность измерения полной мощности	см. таблицы 5 и 6
Погрешность измерения среднеквадратических зна-	см. таблицу 7
чений силы тока	•
Погрешность измерения энергии потерь	см. таблицу 8
Погрешность измерения среднеквадратических зна-	
чений фазных напряжений,	см. таблицу 9
Погрешность измерения коэффициентов искажения	
синусоидальности напряжения	см. таблицу 10
Погрешность измерения коэффициентов п-х гармо-	
нических составляющих напряжения	см. таблицу 11
Пределы допускаемых значений абсолютной по-	
грешности коэффициента несимметрии напряжения	
по обратной последовательности в диапазоне от 0 до	
5% по ГОСТ 32144-2013, %	±0,3
Пределы допускаемых значений абсолютной по-	
грешности коэффициента несимметрии напряжения	
по нулевой последовательности диапазоне от 0 до	
5% по ГОСТ 32144-2013, %	$\pm 0,5$
Пределы допускаемых значений абсолютной по-	
грешности при измерении углов сдвига фазы между	
основными гармониками фазных напряжений и фаз-	
ных токов, между основными гармониками фазных	
напряжений, °	$\pm 1,0$
Пределы допускаемых значений абсолютной по-	
грешности при измерении частоты напряжения сети,	
Гц	±0,1

Продолжение таблицы 3

Наименование характеристики	Значение
Средний температурный коэффициент при измерении	
активной энергии, активной мощности	
-	по ГОСТ 31819.21-2012
реактивной энергии, реактивной мощности	ГОСТ 31819.22-2012
полной мощности, напряжений, токов	по ГОСТ 31819.23-2012
энергии потерь.	см. таблицу 12
	см. таблицу 13
Диапазон входных сигналов	
сила тока	от 0,05 I_6 (0,01 $I_{\scriptscriptstyle H}$) до $I_{\scriptscriptstyle MAKC}$
напряжение	от 0,8 $U_{\text{ном}}$ до 1,15 $U_{\text{ном}}$
частота измерительной сети, Гц	от 47,5 до 52,5
коэффициент мощности	от 0,8 (ёмк.) до 1,0 до 0,5 (инд.)
Диапазон рабочих температур окружающего воздуха, °С	от -40 до +60
Диапазон значений постоянной счетчика, имп/кВт-ч	
(имп/квар·ч)	от 400 до 50000
Порог чувствительности	по ГОСТ 31819.21-2012
	ГОСТ 31819.22-2012
	ГОСТ 31819.23-2012
Пределы основной абсолютной погрешности хода часов,	
с/сут	$\pm 0,5$
Дополнительная погрешность хода часов при нормальной	
температуре и при отключенном питании, с/сут	
	±1
Пределы дополнительной температурной погрешности	
хода часов	
в диапазоне от -10 до +45 °C, с/(°C·сут)	$\pm 0,15$
в диапазоне от -40 до +60 °C, c/(°C·сут)	$\pm 0,\!20$
Количество десятичных знаков индикатора, не менее	8
Максимальная емкость каждого счетного механизма им-	
пульсных входов, имп.	9999999
T * 0.7	CE 204

Примечание: * класс точности 0,5 по реактивной энергии для счетчиков СЕ 304 определяется исходя из номенклатуры метрологических характеристик. В виду отсутствия в указанном стандарте класса точности 0,5, пределы погрешностей при измерении реактивной энергии для данного типа счетчиков не превышают значений аналогичных погрешностей для счетчиков класса точности 0,5S по ГОСТ 31819.22-2012.

Технические характеристики приведены в таблице 4.

Таблица 4 – технические характеристики

Наименование характеристики	Значение
Полная мощность, потребляемая каждой цепью тока	
при номинальном (базовом) токе, В А, не более	0,1
Полная (активная) мощность, потребляемая каждой	
цепью напряжения при номинальном значении	
напряжения, В А (Вт), не более	8 (2)
Длительность хранения информации при	
отключении питания, лет	30

Продолжение таблицы 4

Продолжение таблицы 4	
Наименование характеристики	Значение
Длительность учёта времени и календаря при от-	
ключенном питании (срок службы элемента пита-	
ния), лет, не менее	10
Замена элемента питания	Без нарушения пломбы поверителя
Число тарифов	4
Число временных зон	15
Количество реле управления нагрузкой	до 2
Допустимое коммутируемое напряжение на	
контактах реле управления нагрузкой, В, не более	265
Допустимое значение коммутируемого тока на	
контактах реле управления нагрузкой, А, не	1
более	
Количество электрических испытательных	
выходов с параметрами ГОСТ 31819.22-2012	4
Количество оптических испытательных выходов с	
параметрами по ГОСТ 31818.11-2012	2
Количество электрических импульсных входов,	
каждый из которых предназначен для счета нарас-	
тающим итогом количества импульсов,	
поступающих от внешних устройств с	
электрическими испытательными выходами по	
ГОСТ 31819.22-2012	4
Скорость обмена по интерфейсам, Бод	от 300 до 115200
Скорость обмена через оптический порт, Бод	от 300 до 57600
Время интеграции средней мощности (периоды	
интеграции выбирается пользователем из ряда),	
мин	1; 2; 3; 4; 5; 6; 10; 12; 15; 20; 30 или 60
Время обновления всех показаний счетчика, с	1
Время чтения любого параметра счетчика по ин-	Зависит от типа параметра и может
терфейсу или оптическому порту, с	изменяться в диапазоне от 0,06 до
	1000,00
	(при скорости 9600 Бод)
Масса счетчика, кг, не более	2,0
Габаритные размеры (длина; ширина; высота), мм,	
не более	278; 173; 90
Средняя наработка до отказа, ч, не менее	160000
Средний срок службы до первого капитального	
ремонта счетчиков, лет, не менее	30

Пределы допускаемых значений основной относительной погрешности, приведенные в таблицах 5-15 нормируют при трехфазном симметричном напряжении и трехфазном симметричном токе для информативных значений входного сигнала.

Пределы допускаемых значений основной относительной погрешности при измерении полной мощности δ_{S} , при трехфазном симметричном напряжении и трехфазном симметричном токе не должны превышать значений, указанных в таблицах 5 и 6.

Таблица 5 - пределы допускаемых значений основной относительной погрешности при измерении полной мошности при трехфазном симметричном напряжении

	Пределы допускаемой основной погрешности δ_{S} , %, для счетчи-			
Значение тока	ков класса точности по активной/реактивной энергии			
	0,2\$/0,5	0,5S/1		
$0.01~I_{\text{HOM}} \le I < 0.05~I_{\text{HOM}}$	±1,0	±1,5		
$0.05~I_{\text{hom}} \leq I \leq I_{\text{make}}$	±0,5	±1,0		

Таблица 6 - пределы допускаемых значений основной относительной погрешности при измере-

нии полной мощности при трехфазном симметричном токе

	1 1 1	1	
Значение тока для счетчиков		Пределы допускаемой осно	овной погрешности
		δ_{S} , %, для счетчиков кл	пасса точности по
		акт./реакт. энергии	
с непосредственным	включаемых через	1/2	2/2
включением	трансформатор		
$0.05 I_6 \le I < 0.10 I_6$	$0.02 I_{\text{HOM}} \le I < 0.05 I_{\text{HOM}}$	±2,5	±2,5
$0.10~\mathrm{I_6} \leq \mathrm{I} \leq \mathrm{I}_{\mathrm{makc}}$	$0.05 I_{\text{HOM}} \leq I \leq I_{\text{Makc}}$	±2,0	±2,0

Пределы допускаемых значений основной относительной погрешности при измерении среднеквадратических значений силы тока δ_I не должны превышать значений, указанных в таблице 7.

Таблица 7 - пределы допускаемых значений основной относительной погрешности при измере-

нии среднеквадратических значений силы тока

		Пределы д	цопускаемой	основной і	тогрешности
		δ_{I} , %, дл	я счетчиков	класса т	очности по
		акт./реакт. энергии			
с непосредственным	включаемых через	0,2S/0,5	0,5S/1	1/2	2/2
включением	трансформатор				
$0.05~I_6 \le I \le I_{\text{makc}}$	$0.05 I_{\text{Hom}} \leq I \leq I_{\text{Makc}}$	±0,5	±1,0	±2,0	±2,0

Пределы допускаемых значений основной относительной погрешности при измерении энергии потерь δ_{II} не должны превышать значений, указанных в таблице 8.

Таблица 8 - пределы допускаемых значений основной относительной погрешности при измере-

нии энергии потерь

<u> </u>					
Значение тока для счетчиков		Пределы д	опускаемой	основной	погрешности
		δ_{Π} , %, дл	ія счетчиков	класса	гочности по
		акт./реакт. энергии			
с непосредственным	включаемых через	0,2S/0,5	0,5S/1	1/2	2/2
включением	трансформатор				
$0.05 I_6 \le I \le I_{\text{make}}$	$0.05 I_{\text{Hom}} \leq I \leq I_{\text{Makc}}$	±2,0	±2,0	±4,0	±4,0

Пределы допускаемых значений основной относительной погрешности при измерении среднеквадратических значений фазных напряжений δ_U не должны превышать значений, указанных в таблице 9.

Таблица 9 – пределы допускаемых значений основной относительной погрешности при измерении среднеквалратических значений фазных напряжений

Значение напряжения		Пределы допус	каемой основной	погрешности δ_U ,	%, для счет-
		чиков класса точности по акт./реакт. энергии			
		0,2S/0,5	0,5S/1	1/2	2/2
	$0.8 \text{U}_{\text{HOM}} < \text{U} < 1.15 \text{U}_{\text{HOM}}$	+0.5	+1.0	+2.0	+2.0

Пределы допускаемых значений погрешности при измерении коэффициентов искажения синусоидальности напряжения δK_U по ГОСТ 32144-2013 не должны превышать значений, указанных в таблице 10.

Таблица 10 – пределы допускаемых значений погрешности при измерении коэффициентов искажения синусоидальности напряжения

Значение коэффициента искажения синусоидальности напряжения	Предел допускаемой абсолютной погрешности ΔK_U , %	Предел допускаемой относительной погрешности δK_U , %
$1\% \leq K_U \leq 15\%$	-	± 5
K _U <1%	±0,05	-

Пределы допускаемых значений погрешности при измерении коэффициентов n-х гармонических составляющих напряжения $\delta K_{U(n)}$ по ГОСТ 32144-2013 не должны превышать значений, указанных в таблице 11.

Таблица 11 - пределы допускаемых значений погрешности при измерении коэффициентов n-х гармонических составляющих напряжения

	Предел допускаемой	Предел допускае-
Значение коэффициента n-х гармонических	абсолютной погрешно-	мой относительной
составляющих напряжения	сти $\Delta K_{U(n)}$, %,	погрешности $\delta K_{U(n)}$,
		%,
$1\% \le K_{U(n)} \le 15\%$	-	± 5
$K_{U(n)} < 1\%$	±0,05	-

Средний температурный коэффициент при измерении при измерении полной мощности, напряжений и токов не должен превышать пределов, установленных в таблице 12, при измерении удельной энергии потерь не должен превышать пределов, установленных в таблице 13.

Таблица 12 - средний температурный коэффициент при измерении при измерении полной мощности, напряжений и токов

Значен	ие тока	-	пературный и мощности,		
для сче	стчиков	для счетчико	в класса точн	ости по акт./р	еакт.
		энергии			
с непосредствен-	включаемых через	0,2S/0,5	0,5S/1	1/2	2/2
ным включением	трансформатор				
$0,1\ I_6 \le I \le I_{\text{makc}}$	$0.05 \ I_{\text{Hom}} \leq I \leq I_{\text{Makc}}$	±0,03	±0,05	±0,10	±0,10

Таблица 13 - средний температурный коэффициент при измерении энергии потерь

	ие тока етчиков	рении энер	емпературный гии потерь, % о акт./реакт. эн	/К, для счет	
с непосредствен-	включаемых через	0,2S/0,5	0,5S/1	1/2	2/2
ным включением	трансформатор				
$0.1 I_6 \le I \le I_{\text{make}}$	$0.05 I_{\text{HOM}} \leq I \leq I_{\text{Makc}}$	±0,10	±0,10	±0,20	±0,20

При измерении активной, реактивной и полной мощности, среднеквадратических значений фазных напряжений, среднеквадратических значений токов, удельной энергии потерь, дополнительные погрешности, вызываемые изменением влияющих величин (кроме температуры окружающей среды) по отношению к нормальным условиям, соответствуют дополнительным погрешностям по активной и реактивной энергии, так как вычисляются из одних и тех же мгновенных значений тока и напряжения.

Знак утверждения типа

наносится на панель счетчиков офсетной печатью (или другим способом, не ухудшающим качества), на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 14 - комплектность

Наименование	Обозначение	Количество
Счетчик активной и реактивной электрической		
энергии трехфазный СЕ 304	-	1 шт.
Комплект принадлежностей	-	1 экз.
Руководство по эксплуатации (одно из исполнений)	ИНЕС.411152.064 РЭ	1 экз.
Методика поверки	ИНЕС.411152.064 Д1	
-	с изменением №2	1 экз.
Формуляр (одно из исполнений)	ИНЕС.411152.064 ФО	

По требованию организаций, производящих регулировку, ремонт и поверку счетчиков, дополнительно высылаются методика поверки, руководство по среднему ремонту и каталог деталей.

Поверка

осуществляется по документу ИНЕС.411152.064 Д1 «Счетчики активной и реактивной электрической энергии трехфазные СЕ 304. Методика поверки» с изменением № 2, утвержденному ФГУП «ВНИИМС» 06.02.2019 г.

Основные средства поверки:

установка для поверки счетчиков электрической энергии СУ201 (Регистрационный номер в Федеральном информационном фонде 37901-14);

частотомер Ч3-63/1 (регистрационный номер в Федеральном информационном фонде средств измерений 9084-90);

секундомер СО спр-2б (регистрационный номер Федеральном информационном фонде средств измерений 44154-10).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик, поверяемых СИ с требуемой точностью.

Знак поверки наносится на навесную пломбу давлением пломбира, а также в виде оттиска в формуляр счетчика или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к счетчикам активной и реактивной электрической энергии трехфазным СЕ 304

ГОСТ 31819.22-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности $0.2\mathrm{S}$ и $0.5\mathrm{S}$

ГОСТ 31819.21-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2

ГОСТ 31818.11-2012 Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии

ГОСТ 31819.23-2012 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии

ГОСТ IEC 61107-2011 Обмен данными при считывании показаний счетчиков, тарификации и управления нагрузкой. Прямой локальный обмен данными

ТУ 4228-057-22136119-2006 Счетчики активной и реактивной электрической энергии трехфазные СЕ 304. Технические условия

Изготовитель

Акционерное общество «Электротехнические заводы «Энергомера» (АО «Энергомера»)

ИНН 2635133470

Адрес: 355029, Ставропольский край, г. Ставрополь, ул. Ленина, д. 415, оф. 294

Телефон: 8 (8652) 35-75-27 Факс: 8 (8652) 56-66-90

E-mail: concern@energomera.ru Web-сайт: www.energomera.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д. 46

Телефон: 8 (495) 437-55-77 Факс: 8 (495) 437-56-66 E-mail: office@vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 29.03.2018 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п.

«___»____2019 г.