ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дозиметры-радиометры МКС КП-АД6

Назначение средства измерений

Дозиметры-радиометры МКС КП-АД6 (далее - МКС КП-АД6) предназначены для измерений мощности амбиентного эквивалента дозы (далее - МАЭД) гамма-излучения, амбиентного эквивалента дозы гамма-излучения (далее - АЭД), плотности потока альфа- и бета- частиц, регистрации загрязнённости поверхностей гамма-излучающими нуклидами в режиме индикации.

Описание средства измерений

Принцип действия МКС КП-АД6 основан на регистрации гамма-излучения, альфа- и бета-частиц счётчиком Гейгера-Мюллера. При попадании гамма- излучения, альфа- и бета- частиц в чувствительный объём счётчика, происходит ионизация газа. Под действием приложенного напряжения заряды собираются на электродах, усиливаются и преобразуются в сформированные электрические импульсы, число которых в единицу времени пропорционально МАЭД или плотности потока альфа- и бета- частиц. Микропроцессор базового блока 6150AD6/H осуществляет подсчёт электрических импульсов, вычисление, хранение и индикацию результатов измерений, управление режимами работы.

МКС КП-АД6 представляет собой:

- базовый блок 6150AD6/H со встроенным детектором для измерений МАЭД и АЭД гамма излучения;
 - выносные блоки детектирования для измерений:
- 6150AD -t/H МАЭД и АЭД гамма-излучения;
- 6150AD-15/Н МАЭД и АЭД гамма-излучения;
- 6150AD-17 плотности потока альфа- и бета- частиц с загрязнённых поверхностей, а также гамма- излучения в режиме индикации;
- 6150AD-k плотности потока альфа- и бета- частиц с загрязнённых поверхностей, а также гамма- излучения в режиме индикации.

Базовый блок 6150AD6/Н измеряет и отображает МАЭД с секундным интервалом, АЭД, вычисляет и отображает среднее значение МАЭД, фиксирует и отображает максимальное значение МАЭД с любым сменным блоком детектирования гамма-излучения, а с детекторами 6150AD-k и 6150AD-17 среднюю и максимальную скорость счёта импульсов.

МКС КП-АД6 используется на предприятиях технологического ядерного цикла, атомных станциях и в организациях, использующих радиоактивные источники излучения, в составе мобильных систем радиационного контроля.

В составе мобильной автоматизированной системы радиационного контроля МКС КП-АД6 может использоваться с карманным переносным компьютером (КПК), программное обеспечение которого позволяет получать задания радиационного контроля в виде слайда или таблицы с указанием точек контроля, проводить измерение радиационной обстановки в точках и сохранять измеренные значения с привязкой к точкам контроля, осуществлять передачу данных измерений из КПК в систему сбора и хранения информации на ПК.

Внешний вид МКС КП-АД6, места пломбировки и размещения знака утверждения типа приведены на рисунке 1.

Рисунок 1. Внешний вид дозиметра-радиометра МКС КП-АД6, места пломбировки и размещения знака утверждения типа.

Программное обеспечение

Дозиметры-радиометры оснащены встроенным программным обеспечением (ПО).

Конструкция СИ исключает возможность несанкционированного влияния на ПО и измерительную информацию.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «высокий» по Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические и технические характеристики МКС КП-АД6 приведены в таблице 2. Таблица 2

таолица 2		
Наименование характеристики	Значение	
	характеристики	
Диапазон регистрируемых энергий гамма-излучения, МэВ	от 0,06 до 3,00	
Диапазон измерений МАЭД, мкЗв/ч		
· базовый блок 6150AD6/H (встроенный детектор)	от 10-1 до 104	
· 6150AD-t/H	от 10 ⁻¹ до 10 ⁷	
· 6150AD-15/H	от 10^2 до 10^7	
Диапазон измерений АЭД, мкЗв		
 базовый блок 6150AD6/Н (встроенный детектор) 	от 10-1 до 10-4	
· 6150AD-t/H	от 10 ⁻¹ до 10 ⁷	
· 6150AD-15/H	от 10 ⁻¹ до 10 ⁷	
Пределы допускаемой основной относительной погрешности	$\pm (15 + 3/H)$	
измерений МАЭД, %	где Н – численное значение	
	измеренной МАЭД, мкЗв/ч	
Пределы допускаемой основной относительной погрешности	± 15	
измерений АЭД, %		
Пределы допускаемой дополнительной относительной		
погрешности измерений МАЭД и АЭД, %:		
при снижении напряжения питания до 4,75 В	± 5	
при изменении рабочей температуры от нормальной до	± 10	
повышенной или пониженной	10	
при изменении влажности от нормальной	± 10	
до повышенной	- 10	

11	Значение
Наименование характеристики	характеристики
Энергетическая зависимость чувствительности в диапазоне	
регистрируемых энергий гамма-излучения относительно Cs-137, %	± 30
Зависимость чувствительности от угла падения фотонного излучения:	
\cdot в пределах углов $\pm 45^{\circ}$ для энергии 60 кэВ, %	± 40
• в пределах углов ± 45° для энергии 662 кэВ, %	± 20
Диапазон регистрируемых энергий альфа-излучения, МэВ	от 4,2 до 6,0
Диапазон измерений плотности потока альфа-частиц, мин ⁻¹ ·см ⁻²	
• 6150AD-k (площадь чувствительной области 170 см ²)	от 3,0×10 ⁰ до 3,0·10 ⁴
· 6150AD-17 (площадь чувствительной области 6,2 см²)	от 3,5×10 ¹ до 3,5·10 ⁵
Пределы допускаемой основной относительной погрешности	
измерений плотности потока альфа-частиц, % • 6150AD-k	± (20 ± 60/E)
· 0130AD-k	$\pm (30 + 60/F)$, где F – численное значение
	измеренной плотности пото-
	ка альфа-частиц, мин $^{-1}$ см $^{-2}$
· 6150AD-17	$\pm (30 + 700/F),$
	где F – численное значение
	измеренной плотности пото-
T	ка альфа-частиц, мин ⁻¹ ·см ⁻²
Пределы допускаемой дополнительной относительной погрешности измерений плотности потока альфа-частиц при	± 5
снижении напряжения питания до 4,75 В, %	
Диапазон регистрируемых энергий бета-излучения, МэВ	от 0,08 до 2,00
Диапазон измерений плотности потока бета-частиц, мин ⁻¹ ·см ⁻²	
• 6150AD-k	от 2,0×10 ⁰ до 2,5·10 ⁴
· 6150AD-17	от 2,0 ⋈ 0 ¹ до 2,5 10 ⁵
Пределы допускаемой основной относительной погрешности	
измерения плотности потока бета -частиц, % - 6150AD-k	± (20 ± 40/E)
· 6150AD-k	$\pm (30 + 40/F)$, где F – численное значение
	измеренной плотности пото-
	ка бета -частиц, мин ⁻¹ ·см ⁻²
· 6150AD-17	$\pm (30 + 400/F),$
	где F – численное значение
	измеренной плотности пото-
Продоли допускомой дополучительной стистической	ка бета -частиц, мин ⁻¹ ·см ⁻²
Пределы допускаемой дополнительной относительной погрешности измерений плотности потока бета-частиц	± 5
при снижении напряжения питания до 4,75 В, %	
Нормальные условия применения:	oz 0 zo 20
- температура окружающего воздуха, °С	от 0 до 30 до 80
- относительная влажность, %	от 90 до 100
- атмосферное давление, кПа	0170 A0 100

Наумамарамуа марамуаруулуу	Значение	
Наименование характеристики	характеристики	
Рабочие условия применения:		
- температура окружающего воздуха, °С		
6150AD6/H, 6150AD-t/H, 6150AD-15/H,	от минус 30 до 50	
6150AD-17	от минус 30 до 50	
6150AD-k	от минус 15 до 50	
- относительная влажность при температуре окружающего		
воздуха +35 °C и более низких температурах без конденсации		
влаги, %	до 95	
- атмосферное давление, кПа	от 84 до 106,7	
Габаритные размеры, мм, не более		
6150AD6/H, (длина×ширина×высота)	132×81×34	
6150AD-t/H, (длина×ширина×высота)	4250×130×92	
6150AD -15/H, (длина×диаметр)	118×26	
6150AD-17, (длина×диаметр)	135×49	
6150AD –k, (длина×ширина×высота)	210×120×90	
Масса, кг, не более		
6150AD6/H	0,495	
6150AD-t/H	3,5	
6150AD -15/H	0,075	
6150AD-17	0,18	
6150AD –k	1,7	
Питание осуществляется от источника постоянного напряжения	9	
- источника электричества для автономного питания, В		
Потребляемый ток, мкА, не более	110	
Средняя наработка на отказ, ч, не менее	10000	
Средний срок службы после ввода в эксплуатацию, лет,	7	
не менее		

Знак утверждения типа

наносится типографским способом в левый верхний угол титульного листа руководства по эксплуатации и методом шелкографии на пленочную этикетку, клеящуюся на корпус МКС КП-АД6.

Комплектность средства измерений

Комплектность поставки МКС КП-АД6 приведена в таблице 3.

Таблица 3

Обозначение	Наименование	Кол - во
ШРЯИ.412111.002	Дозиметр-радиометр МКС КП-АД6, в том числе:	1 шт.
	Базовый блок 6150AD6/H с элементом питания ти-	1 шт.
	па 6LR61 (типа Duracell, Alkaline)	
	Персональный компьютер TDS Recon с комплектом	1 шт. *
	принадлежностей	
ШРЯИ.412111.002-001	Выносной блок детектирования 6150AD-t/H	1 шт.*
ШРЯИ.412111.002-002	Выносной блок детектирования 6150AD-15/Н	1 шт.*
ШРЯИ.412111.002-003	Выносной блок детектирования 6150AD-17	1 шт.*
ШРЯИ.412111.002-004	Выносной блок детектирования 6150AD-k	1 шт.*
ШРЯИ.412111.002РЭ	Руководство по эксплуатации	1 шт.

Обозначение	Наименование	Кол - во	
ШРЯИ.412111.002ФО	Формуляр	1 шт.	
	Свидетельство о поверке	**	
* Зависит от заказа			
** Выдается Государственным органом по метрологическому контролю и надзору			

Поверка

осуществляется в соответствии с разделом 6 «Методика поверки» документа ШРЯИ.412111.002 РЭ «Дозиметр-радиометр МКС КП-АД6. Руководство по эксплуатации», согласованным ГЦИ СИ ФГУП "ВНИИФТРИ" 15 февраля 2010 г.

Идентификация ПО при поверке осуществляется в соответствии с документом «Дозиметр-радиометр МКС КП-АД6. Руководство по эксплуатации» ШРЯИ.412111.002 РЭ.

Основные средства поверки:

- установка поверочная дозиметрическая гамма-излучения УПГД-2М-Д (рег. № 32425-06), диапазон МАЭД от $5\cdot 10^{-7}$ до $5\cdot 10^{-2}$ Зв/ч, пределы допускаемой относительной погрешности измерений ± 5 %;
- государственный первичный эталон единиц поглощенной дозы и мощности поглощенной дозы фотонного и электронного излучений ГЭТ 38-2011, диапазон измерений от $6.0^{\circ}10^{\circ3}$ до $4.5.10^{3}$ Гр/мин, пределы допускаемой относительной погрешности измерений \pm 1 %;
- источники радионуклидные альфа-излучения типа 6П9, активность $10^2 \div 10^5$ Бк, пределы допускаемой относительной погрешности воспроизведения активности $\pm 5 \%$;
- источники радионуклидные бета-излучения типа 6П9, активность $10^2 \div 10^5$ Бк, пределы допускаемой относительной погрешности воспроизведения активности $\pm 5 \%$.

Сведения о методиках (методах) измерений

«Дозиметр-радиометр МКС КП-АД6. Руководство по эксплуатации» ШРЯИ.412111.002 РЭ.

Нормативные и технические документы, устанавливающие требования к дозиметрамрадиометрам МКС КП-АД6:

ГОСТ 27451-87 «Средства измерений ионизирующих излучений. Общие технические условия».

ГОСТ 4.59-79 «Система показателей качества продукции. Средства измерений ионизирующих излучений. Номенклатура показателей».

ГОСТ 17225-85 «Радиометры загрязнённости поверхностей альфа- и бета-активными веществами. Общие технические требования и методы испытаний».

ГОСТ 29074-91 «Аппаратура контроля радиационной обстановки. Общие требования».

ГОСТ 8.070-96 «ГСИ. Государственная поверочная схема для средств измерений поглощенной и эквивалентной доз и мощности поглощенной и эквивалентной доз фотонного и электронного излучений».

ГОСТ 8.033-96 «ГСИ. Государственная поверочная схема для средств измерений активности радионуклидов, потока и плотности потока альфа-, бета-частиц и фотонов радионуклидных источников».

«Дозиметр-радиометр МКС КП-АД6. Технические условия» ШРЯИ.412111.002 ТУ»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

 при осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности при эксплуатации опасного производственного объекта;

- при осуществлении деятельности в области гражданской обороны, защиты населения и территорий от чрезвычайных ситуаций природного и техногенного характера;
- при осуществление деятельности в области использования атомной энергии.

Изготовитель

Общество с ограниченной ответственностью Научно-производственное предприятие «Радиационный контроль. Приборы и методы» (ООО НПП «РАДИКО»)

Юридический адрес: 249035, г. Обнинск, Калужская обл., пр-т Маркса, 14 Почтовый адрес: 249035, г. Обнинск, Калужская обл., пр-т Маркса, 14

Тел.: +7(484)39-4-97-16; Факс: +7(484)39-4-97-68

E-mail: main@radico.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»).

Юридический адрес: 141570, Московская область, Солнечногорский р-н, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11.

Почтовый адрес: 141570, Московская область, Солнечногорский р-н, п/о Менделеево.

Телефон: (495) 546-34-58, факс: (495) 526-63-21.

E-mail: office@vniiftri.ru.

Аттестат аккредитации $\Phi\Gamma$ УП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому		
регулированию и метрологии	М.п. « »	С.С. Голубев 2015 г