ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Стенды ультразвукового контроля осей

Назначение средства измерений

Стенды ультразвукового контроля осей (далее по тексту - стенды) предназначены для измерения координат дефектов, толщины и отношения амплитуд сигналов при автоматизированном ультразвуковом контроля чистовых железнодорожных осей колесных пар подвижного состава 29C6.31.110.001.

Описание средства измерений

Принцип работы стендов основан на свойстве ультразвуковых колебаний отражаться от границы раздела сред с разными акустическими сопротивлениями.

Стенд включает следующие составные части:

- 1. Станок ультразвукового контроля осей:
- Станина,
- Ванна,
- Механизм вращения,
- Акустический блок,
- Механизм продольного перемещения,
- Механизм вертикального перемещения,
- Система водооборота;
- 2.Система ультразвукового контроля;
- 3. Шкаф управления;
- 4.Пульт управления.

В состав Системы ультразвукового контроля входят:

- ультразвуковой дефектоскоп «Интротест-2.3»;
- автоматизированное рабочее место (АРМ) оператора;
- принтер;
- комплект пьезоэлектрических преобразователей (ПЭП);
- узел подвески с устройствами юстировки;
- комплект кабелей;
- коммутатор Ethernet;
- источник бесперебойного питания (ИБП).

Системный блок APM оператора располагается внутри пульта управления. Здесь же расположен источник бесперебойного питания.

Электронный блок дефектоскопа «Интротест-2.3» расположен в кожухе на каретке, входящей в состав механизма продольного перемещения стенда, и включается автоматически при подаче на него питания (при включении источника бесперебойного питания).

Ультразвуковые преобразователи размещены в узле подвески, с помощью которого производится их перемещение и регулировка. Устройство подвески обеспечивает индивидуальную двухкоординатную угловую юстировку преобразователей.

Управление дефектоскопом осуществляется дистанционно с рабочего места оператора. Компьютер APM и электронный блок дефектоскопа, расположенный на подвижной каретке, имеют связь по сети Ethernet и соединены через порты коммутатора Ethernet.

Общего вид стенда приведен на рисунке 1.

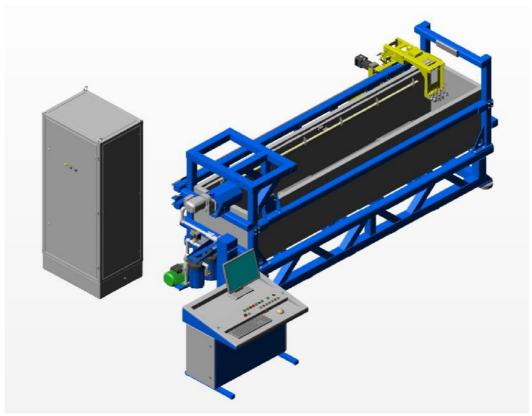


Рисунок 1 – Общий вид стенда

Программное обеспечение

Обработка результатов измерений, управление стендом, создание и сохранение файлов с данными контроля, протоколов контроля, файлов настроек, формирование отчетов в реальном времени производится с помощью программного обеспечения.

Программа «АРМ УЗК осей» предназначена для управления стендом ультразвукового контроля осей.

Программное обеспечение (ПО) стенда состоит из исполняемого файла ARM_UZZHMSpindle.exe и окружающих вспомогательных файлов. Файл расположен в каталоге C:\ARM. Метрологически значимая часть ПО вынесена в файл ARM_Metrology.jar, расположенный рядом с исполняемым файлом.

Структурная схема ПО стенда приведена на рисунке 2.

Рисунок 2 – Структурная схема ПО

Программа «АРМ УЗК осей» выполняет следующие функции:

- хранение и передача в ультразвуковой дефектоскоп параметров контроля;
- получение из дефектоскопа оцифрованных акустических сигналов и данных с энкодера положения каретки с ультразвуковыми датчиками;
- вычисление превышения акустического сигнала над заданным пользователем порогом в дБ;
 - -вычисление координаты каретки с датчиками относительно торца контролируемой оси;
- во время автоматического контроля: запись превышений над порогом и координат во временную память, визуализация процесса контроля на обзорном изображении;
 - -ведение локального архива результатов контроля.

Уровень защиты метрологически значимой части ПО от непреднамеренных и преднамеренных изменений в соответствии с МИ 3286-2010 – «А».

Влияние ПО учтено при нормировании метрологических характеристик стенда.

Таблица 1

тиолици т				
Наименование	Идентификационное	Номер версии	Цифровой иденти-	Алгоритм вычис-
программного	наименование про-	(идентификаци-	фикатор программ-	ления цифрового
обеспечения	граммного обеспе-	онный номер)	ного обеспечения	идентификатора
	чения	программного	(контрольная сумма	программного
		обеспечения	исполняемого кода)	обеспечения
АРМ УЗК осей	ARM_Metrology.jar	V 1.0	939856648	CRC-32

Метрологические и технические характеристики

Основные характеристики стенда приведены в таблице 2.

Таблица 2

Наименование характеристик	Значение характеристик	
Амплитуда зондирующего импульса U _г , В	От 50 до 300	
Длительность зондирующего импульса t _и , нс	От 50 до 200	
Полоса пропускания приемника, МГц	От 0,8 до 30	
Динамический диапазон временной регулировки чувстви-		
тельности (ВРЧ), дБ, не менее	80	
Диапазон измерения координат дефекта, мм	от 30 до 1400	
Пределы допускаемой абсолютной погрешности измерения	$\pm (0.5 + 0.01 \cdot x),$	
координат дефекта Δx , мм	х – измеряемая координата, мм	
Диапазон измерения отношения амплитуд сигналов (коэффи-	090	
циента усиления) на входе приемника, дБ	от 0 до 80	
Пределы допускаемой абсолютной погрешности измерения		
отношения амплитуд сигналов (коэффициента усиления) на	± 1,0	
входе приемника, дБ		
Частота АЦП, МГц	От 1 до 100	
Максимальная чувствительность приемника дефектоскопа в		
диапазонах частот, мкВ		
0.8 - 3.4 MГц	40	
$1,6-7,3$ М Γ ц	50	
Максимальная длительность измерительного тракта, мкс	16000 (при частоте АЦП 1 МГц)	
	160 (при частоте АЦП 100 МГц).	
Основные параметры оси:		
- длина оси, мм, не более	2430	
- диаметр оси максимальный, мм	237	
- масса оси, кг, не более	700	
Диапазон перемещения каретки, мм,	От 0 до 2500	
Пределы допускаемой абсолютной погрешности измерения		
координаты каретки, мм,	± 2	
Питание от сети общего назначения переменным током		
- номинальным напряжением, В	380 ± 5 %	
- частотой, Гц	50 ± 2	
Потребляемая мощность, кВт, не более	45	
Габаритные размеры, мм, не более	*	
Средний срок службы, лет, не менее	10	
Средняя наработка на отказ, ч, не менее	20 000	
Рабочие условия эксплуатации:		
- температура окружающего воздуха, °С	от плюс 5 до 30	
- относительная влажность воздуха, % (без конденсации влаги)	от 30 до 80 при 35 °C	
- атмосферное давление, кПа	от 84,0 до 106,7	
* - Габаритные размеры стенда приведены в	конструкторской документации	
42 7610.1108.00.00.000 СБ на соответствующий блок.		

Знак утверждения типа

Знак утверждения типа наносят на корпуса составных частей стенда металлографическим методом на табличке, закрепляемой заклёпками на поверхность оборудования стенда, и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплект поставки соответствует таблице 3.

Таблица 3

Наименование	Обозначение	Кол-во
Стенд ультразвукового контроля осей	ТУ 4276-108-20872624-2010	1
Руководство по эксплуатации	42 7610.1108 РЭ	1
Руководство оператора	A.B.00001-01 34 01-1	1
Методика поверки	МП 05-011-2011	1
Свидетельство об упаковывании	-	1

Поверка

осуществляется по документу «ГСИ. Стенд ультразвукового контроля осей. Методика поверки МП 05-011-2011», утверждённому ГЦИ СИ Φ ГУП «ВНИИО Φ И» в июне 2011 г.

Основные средства поверки:

- Рулетка Р4Н2Д по ГОСТ 7502-98, диапазон измерения от 0 до 4 м, класс точности 2.
- осциллограф универсальный С1-96 И22.044.042 ТУ, диапазон частот от 10 Гц до 35 МГц;
- генератор сигналов высокочастотный Γ 4-102. 3.260.068 ТУ, частота от 0,1 до 50 М Γ ц, максимальная амплитуда выходного сигнала не менее 0,5 В;
- временной селектор BC 9603, диапазон рабочих частот (0.01 30) М Γ ц, амплитуда входного сигнала не более 1.5 B;
- аттенюатор ATT-90-0,1-95/2, диапазон ослабления сигналов (0-90) дБ, диапазон рабочих частот (0,01-30) М Γ ц;
 - контрольный образец № 2 из комплекта КОУ-2;

Сведения о методиках (методах) измерений

Сведения о методах измерений приведены в Руководстве по эксплуатации «Стенд ультразвукового контроля осей» 42 7610.1108 РЭ.

Нормативные и технические документы, устанавливающие требования к стенду ультразвукового контроля осей

ТУ 4276-108-20872624-2010. Стенд ультразвукового контроля осей. Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Стенды ультразвукового контроля осей могут применяться при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Закрытое Акционерное Общество «Научно-Производственное Объединение «ИНТРОТЕСТ» (ЗАО «НПО «ИНТРОТЕСТ»).

Юридический адрес: 620102, г. Екатеринбург, ул. Чкалова, 3. Почтовый адрес: 620049, г. Екатеринбург, 49-ОПС, а/я 105.

Телефон/факс: (343) 374-05-71.

Испытательный центр

Государственный центр испытаний средств измерений ФГУП «ВНИИОФИ» Аттестат аккредитации №№ 30003-08 действителен до 01 января 2014

Адрес: 119361, г.Москва, ул.Озерная, 46, тел. 437-56-33, факс 437-31-47

E-mail: vniiofi@vniiofi.ru сайт: www.vniiofi.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян