ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы неавтоматического действия CWM

Назначение средства измерений

Весы неавтоматического действия CWM (далее – весы) предназначены для измерений массы товаров в статическом режиме.

Описание средства измерений

Конструктивно весы состоят из взвешивающего модуля, включающего в себя грузоприемное устройство (далее – ГПУ), опирающегося на весоизмерительный тензорезисторный датчик (далее – датчик), конструктивно выполненный в едином корпусе с аналого-цифровым преобразователем, и терминала, оснащенного клавиатурой и сенсорным дисплеем, а так же цифровыми интерфейсами (RS 232C, Ethernet для CWM-4000 и CWM-AI; USB, Ethernet для CWM-NANO) для связи с внешними устройствами (например, ПК).

Электрическое соединение функциональных узлов осуществляется сигнальными кабелями.

Взвешивающий модуль весов встраивается в технологическую машину (далее – машина), выполняющую функцию упаковки взвешенного товара с возможностью печатания этикетки с указанием наименования, массы, цены и стоимости взвешенного товара. Машины оснащены гребенками, которые снимают взвешенный товар с ГПУ весов и помещают его на конвейер, встроенный в машину, или непосредственно в устройство упаковки. По окончании процедуры упаковки, на взвешенный и упакованный товар наклеивается этикетка с указанием массы, цены и стоимости взвешенного товара автоматически или вручную в зависимости от модификации машины.

Общий вид весов приведен на рисунках 1-3.

Рисунок 1 – Общий вид весов CWM-4000 в различных исполнениях

Рисунок 2 – Общий вид весов CWM-NANO

Рисунок 3 – Общий вид весов CWM-AI

Принцип действия весов основан на преобразовании деформации упругого элемента датчика, возникающей под действием силы тяжести взвешиваемого груза, в аналоговый электрический сигнал, изменяющийся соответственно массе груза. Далее этот сигнал преобразуется в цифровой код и обрабатывается. Измеренное значение массы выводится на дисплей терминала.

Весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1–2011):

- устройство автоматической и полуавтоматической установки на нуль (T.2.7.2.2, T.2.7.2.3);
 - устройство слежения за нулем (Т.2.7.3);
 - устройство первоначальной установки на нуль (Т.2.7.2.4);
 - устройство индикации отклонения от нуля (4.5.5);
 - устройство уравновешивания тары устройство выборки массы тары (Т.2.7.4.1);
 - устройство предварительного задания значения массы тары (Т.2.7.5);
- возможность вычисления стоимости и печати этикетки со значением массы, цены за единицу товара и стоимости упакованного товара (Т.1.2.9);
 - устройство установки по уровню (Т.2.7.1).

На маркировочной табличке весов указывают:

- обозначение модели весов;
- класс точности (III);
- значения Max, Min, e;
- торговую марку изготовителя и представителя или его полное наименование;
- серийный номер;
- знак утверждения типа.

Весы выпускаются в различных модификациях, отличающихся максимальной (Max) и минимальной (Min) нагрузками, действительной ценой деления (d) и поверочным делением (e), а также массой и габаритными размерами.

Обозначение модификаций весов CWM имеет вид CWM- $X_1 X_2 X_3 X_4$ - $X_5 X_6 X_7 X_8 X_9$, где:

 X_1 - тип системы: 4000 – базовая модель или AI – модификация без центрирующего устройства;

 X_2 - A — система с автоматической маркировкой (этикетка приклеивается к упакованному товару с помощью электропневматического устройства) или DF — модификация системы без автоматической маркировки (этикетка приклеивается к упакованному товару вручную);

 X_3 (если присутствует) - S – один принтер или T – два принтера;

 X_4 (если присутствует) - 1 или 2 — возможность установки одной или двух (соответственно) плёнок;

 X_5 (если присутствует) - J – дополнительный выходной транспортёр для транспортировки товара после его упаковки в зону хранения или B - дополнительный удлинённый выходной транспортёр для транспортировки товара после его упаковки в зону хранения;

 X_6 (если присутствует) - R – дополнительный выходной транспортёр расположен справа (если отсутствует – слева);

 X_7 (если присутствует) - W – дополнительный принтер, расположенный в нижней части;

 X_8 (если присутствует) – K – возможность присоединения приставного подающего конвейера; X_9 (если присутствует) – PS-EMZ – приставной подающий конвейер.

Знак поверки в виде наклейки наносится на лицевую панель индикатора. Схема пломбировки от несанкционированного доступа приведена на рисунке 4.

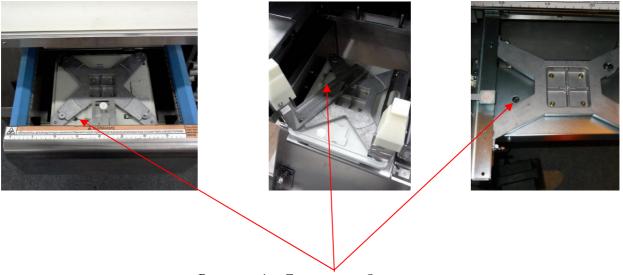


Рисунок 4 – Схема пломбировки весов

Программное обеспечение

Программное обеспечение (далее – ΠO) весов является встроенным и метрологически значимым.

Идентификационным признаком ПО служит номер версии, который отображается в меню весов при нажатии определённой комбинации клавиш.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается защитной пломбой. Изменение ПО невозможно без применения специализированного оборудования производителя.

Уровень защиты ПО от непреднамеренных и преднамеренных воздействий в соответствии с P 50.2.077-2014 – «высокий».

Таблица 1

Модифин	кация ве-	Наимено-	Идентифика-	Номер версии	Цифровой иденти-	Алгоритм вы-
cc)B	вание ПО	ционное на-	(идентифика-	фикатор ПО (кон-	числения циф-
			именование	ционный но-	трольная сумма	рового иденти-
			ПО	мер) ПО	исполняемого ко-	фикатора ПО
					да)	
CWM	-4000	s-software		J0503х или		
CWM-	NANO	s-software	_	J0659x	_	_
CWN	M-AI	s-software	_	J0776x		_
Примечание: х – символ, указывающий на номер версии метрологически незначимой части ПС						

Метрологические и технические характеристики

Метрологические характеристики представлены в таблицах 2, 3.

Таблина 2

Гаолица 2				
	Обозначение модификаций			
Наименование характеристики	CWM-AI		CWM-4000	
Класс точности по ГОСТ OIML R 76-1-2011		I	II	
Максимальная нагрузка Мах ₁ / Мах ₂ , кг	3/6	6/15	3/6	6/15
Поверочный интервал e_1/e_2 , и действительная цена деления d_1/d_2 , (e_i = d_i), г	1/2	2/5	1/2	2/5
Число поверочных интервалов n_1/n_2	3000/3000	3000/3000	3000/3000	3000/3000
Пределы допускаемой погрешности при первичной поверке*				
0≤ <i>m</i> ≤500e	±0,5e			
500e< <i>m</i> ≤ 2000e	±1e			
2000e< <i>m</i> ≤10000e	±1,5e			
Диапазон уравновешивания тары, г	От 0 до 2999	От 0 до 5998	От 0 до 2999	От 0 до 5998
Диапазон температуры (п. 3.9.2.2 ГОСТ OIML R 76-1–2011), °C	от 0 до +40		от +5 до +40	
Габаритные размеры, ДхВхШ, мм, не более	2520x1750x2565		2520x1750x2565	
Масса, кг, не более	580		580	

Таблица 3

Наименование характеристики	Значение характеристики		
паименование характеристики	CWM-NANO		
Класс точности по ГОСТ OIML R 76-1-2011	III		
Максимальная нагрузка 6000/15000		15000	
$Max_1 / Max_2 (Max)$, Γ	0000/13000	13000	
Поверочный интервал e_1/e_2 (e), и действительная цена	2/5	5	
деления d_1/d_2 (d), (e_i = d_i), Γ			
Число поверочных интервалов n_1/n_2 (n)	3000/3000	3000	
Пределы допускаемой погрешности при первичной по			
верке*			
0≤ <i>m</i> ≤500e	±0,5e		
500e< <i>m</i> ≤ 2000e	±1e		
2000e< <i>m</i> ≤10000e	±1,5e		

Наименование характеристики	Значение характеристики		
ттаименование характеристики	CWM-NANO		
Диапазон уравновешивания тары, г	От 0 до 5998	От 0 до 9995	
Диапазон температуры (п. 3.9.2.1 ГОСТ OIML R 76-1–2011), °C	от –10 до +40		
Габаритные размеры, ДхВхШ, мм, не более	875x71	0x710	
Масса, кг, не более	11	0	

^{*} Пределы допускаемой погрешности в эксплуатации равны удвоенному значению пределов допускаемых погрешностей при первичной поверке.

Электрическое питание от сети переменного тока:

напряжение, В	$220_{-15\%}^{+10\%}$; $380_{-15\%}^{+10\%}$
частота, Гц	50 ± 1

Знак утверждения типа

наносится на маркировочные таблички, расположенные на терминале и/или на корпусе ГПУ весов.

Комплектность средства измерений

Таблица 4

Наименование	Количество
Весы	1 шт
Руководство по эксплуатации	1 экз

Поверка

осуществляется по приложению ДА «Методика поверки весов» ГОСТ OIML R 76-1–2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Идентификационные данные, а также процедура идентификации программного обеспечения приведены в Приложении 1 документа «Весы неавтоматического действия СWM-4000», в Разделе 4 документа «Весы неавтоматического действия СWM-NANO» и в Разделе 4 документа «Весы неавтоматического действия СWM-AI».

Основные средства поверки: гири, соответствующие классам точности F_2 , M_1 по ГОСТ OIML R 111-1–2009.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Сведения о методиках (методах) измерений

приведены в документах «Весы неавтоматического действия CWM-4000», «Весы неавтоматического действия CWM-NANO» и «Весы неавтоматического действия CWM-AI».

Нормативные и технические документы, устанавливающие требования к весам неавтоматического действия CWM

ГОСТ OIML R 76-1–2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»

ГОСТ 8.021–2005 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений массы»

Техническая документация фирмы «CAS Corporation», Республика Корея

Изготовитель

Фирма «CAS Corporation», Республика Корея #262, Geurugogae-ro, Gwangjeok-myeon, Yangju-si, Gyeonggi-do, Республика Корея #44, Sanno-Cho, Shooin, Sakyo-Ku, Kyoto, Япония

Заявитель

Московское представительство фирмы «Кас Корпорейшн Лтд»

Адрес: 125080, г. Москва, Волоколамское шоссе, д. 1, стр. 1, офис 506-2

Тел./факс: +7 (495) 784-77-04 E-mail: casrussia@cas.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

119361, г. Москва, ул. Озерная, д. 46

Тел.: +7 (495) 437-55-77, факс: +7 (495) 437-56-66

E-mail: Office@vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____2019 г.