ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы программно-технические контролируемого пункта «RTU - 4» и «RTU - 4М»

Назначение средства измерений

Комплексы программно-технические контролируемого пункта «RTU - 4» и «RTU - 4М» (далее - комплексы) предназначены для измерений аналоговых сигналов в виде напряжения и силы постоянного тока, а также приёма и обработки дискретных сигналов; автоматизированного и автоматического управления и регулирования на основе измерений параметров технологического процесса, выдачи сигналов сигнализации, формирования управляющих аналоговых и дискретных сигналов.

Описание средства измерений

«RTU - 4» и «RTU - 4М» с функцией системы автоматического управления применяются в составе комплексов программно-технических телемеханики «SupeRTU - 4» и «SupeRTU - 4М» для автоматического контроля, автоматического и автоматизированного управления технологическими процессами и оборудованием линейной части магистральных газопроводов, коллекторов газовых промыслов, газораспределительных станций (ГРС) и технологических объектов вспомогательного назначения. Комплексы представляют собой многофункциональные многопроцессорные устройства, предназначенное для выполнения различных операций: телеизмерений, телесигнализации, телеуправления, телерегулирования, автоматического управления и регулирования, а также мониторинга вычислителей расхода, станций катодной защиты, систем автоматического управления ГРС, систем обнаружения утечек и других внешних устройств, подключаемых к комплексам.

Комплексы осуществляют:

- измерение выходных аналоговых сигналов датчиков, отображение полученной информации на мониторах оператора, контроль выхода сигналов за заданные уставки, диагностирование оборудования,
 - обработку информации по заложенным алгоритмам управления и регулирования;
 - формирование аналоговых и дискретных сигналов управления;
- регистрацию контролируемых параметров (от датчиков с аналоговым или цифровым выходом) и событий в энергонезависимой памяти;
- сигнализацию о выходе контролируемых параметров за уставки, об обнаружении неисправностей оборудования.

Комплексы конструктивно выполнены из нескольких отдельных шкафов: блоков контроля и управления БлУ-46 (количество и варианты исполнения определяются индивидуальным заказом, в каждом блоке может располагаться до 12 модулей); блока питания БП-65; пульта оператора ПуУ-28.

Блок БлУ-46 состоит из набора функциональных модулей, количество которых определяется на стадии проектирования комплекса в соответствии с опросным листом заказчика. Функции БлУ-46 реализуются в модулях устройств связи с объектом (УСО), а также в модуле программируемого логического контроллера (ПЛК).

Комплексы содержат аналоговые измерительные каналы (ИК) ввода-вывода и дискретные каналы ввода-вывода, а так же цифровые каналы для связи с внешним оборудованием.

Комплексы осуществляют прием и преобразование к цифровому виду аналоговых сигналов силы и напряжения постоянного тока, а так же преобразование цифрового кода в сигнал силы постоянного тока 4-20мА. К комплексам могут подключаться контактные и бесконтактные датчики, отвечающие требованиям ГОСТ 26.205-88.

Связь комплексов с другим оборудованием осуществляется по интерфейсам RS-232, RS-485, или Ethernet, а также по проводным, оптическим и радиоканалам.

Различие конкретных исполнений комплексов между собой заключается в номенклатуре и количестве функциональных модулей, включаемых в состав комплексов, а также составом программного обеспечения, ориентированного на конкретный тип оборудования.

Аппаратура комплексов предназначена для установки вне взрывоопасной зоны. Общий вид комплексов представлен на рисунке 1.

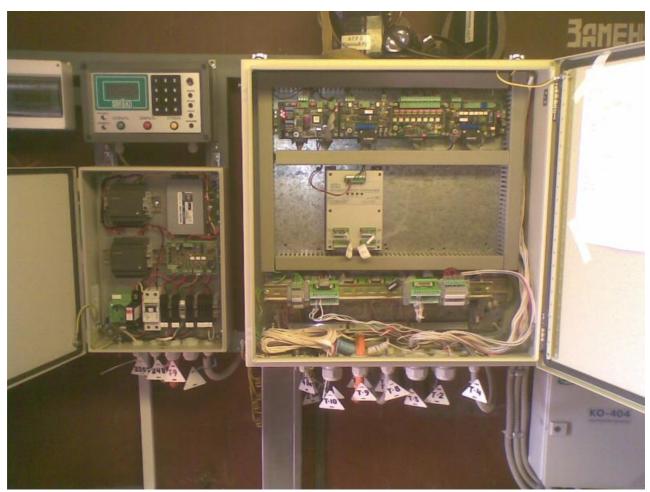


Рисунок 1 - Фото общего вида комплексов

Программное обеспечение

Программное обеспечение (ΠO) комплексов включает в себя ΠO модуля $\Pi J K$, а также сервисное программное обеспечение.

ПО модуля ПЛК записывается в энергонезависимую память модуля и выполняет следующие основные функции:

- прием команд с верхнего уровня (пульта управления) и передача их конкретному модулю, а также приёма ответных сообщений от модулей;
 - последовательный циклический опрос модулей комплексов;
- фильтрация и временное хранение обнаруженных при опросе изменения состояния модулей комплексов, генерацию сообщений и передачу их, по запросу, на пульт управления;
- связь модулей комплексов с персональным компьютером при их конфигурации, хранение конфигурации;
- обеспечение выполнения алгоритмов автоматического и автоматизированного управления.

Сервисное программное обеспечение ServiceRTU предназначено для конфигурации модулей комплексов, записи и чтения технологических параметров, установки режимов работы комплексов, а также проверки и калибровки каналов модулей УСО.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значения					
данные (признаки)	Compyeaves	Compyeyee				
	Сервисное	-				
Идентификационное	ПО ком-	ПО ком-	PIC_AI	PIC_VL	PIC_SCP	PIC PWR
наименование ПО	плекса	плекса	I IC_AI	TIC_VL		
	RTU-4	RTU-4M				
Номер версии (иден-	HO HINKO	110 1111110	110 11111110	HO HINGO		110 1111110
тификационный но-	не ниже	не ниже	не ниже	не ниже	не ниже 2	не ниже
мер) ПО	2.3	3.1	1.1	1.1		1.1
Цифровой идентифи-	По номе-	По номеру	C02A*	CF12*	7751*	2E44*
катор ПО	ру версии	версии	CUZA	CI12	7731	212 44 ·
* контрольная сумма по алгоритму CRC-16.						

Защита от непреднамеренных и преднамеренных изменений метрологически значимой части ПО и измеренных данных осуществляется:

- защитой записей об информации, хранимой в базе данных (защита доступа к БД);
- контролем целостности данных в процессе выборки из базы данных;
- автоматическим контролем доступа к хранимой информации, согласно роли оператора, используемых стратегий доступа и имеющихся у оператора прав;
- фиксация в журналах работы фактов (не)успешного доступа пользователей к хранимой информации, модификация настроек системы ,производимое управление полевым оборудованием.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «средний» по Р 50.2.077-2014.

Метрологические и технические характеристики

Основные метрологические характеристики комплексов приведены в таблице 2.

Таблица 2 - Основные характеристики комплексов

Наименование	Входной сиг-	Выходной	Пределы до-	Пределы допускаемой
каналов	нал	сигнал	пускаемой ос-	дополнительной приве-
ввода-вывода			новной приве-	денной погрешности из-
			денной по-	мерений от влияния изме-
			грешности из-	нения температуры окру-
			мерений, %	жающего воздуха на 10
				°C, %
ИК напряже-	от 0 до 4 В	12 бит*	± 0,2	± 0,2
ния	от 0 до 5 В	12 бит*	± 0,2	± 0,2
ИК тока	от 0 до 20 мА	12 бит*	± 0,1	± 0,15
	от 4 до 20 мА	12 бит*	± 0,1	± 0,15
	16 бит**	от 4 до 20 мА	± 1,0	± 0,5

^{*} указана разрядность аналого-цифрового (цифроаналогового) преобразования. На мониторах рабочих станций измерительная информация отображается в единицах измеряемой датчиком (подключаемым ко входу ИК) физической величины.

Рабочие условия применения:

- температура окружающего воздуха от минус 40 до 50 °C;
- относительная влажность до 100 % с возможностью конденсации влаги;
- напряжение питания от 80 до 264 В;
- частота питания (50±1) Гц.

Габаритные размеры приборов комплекса, мм:

блок БлУ-46	600 x	600 x 220
блок питания БП-65	400 x	300 x 120
пульт ПуУ-28	250 x	250 x 120

Масса приборов комплекса не более, кг:

блок БлУ-46	50
блок питания БП-65	25
пульт ПуУ-28	4

Средняя наработка на отказ - не менее 50 000 часов.

Знак утверждения типа

наносится типографским методом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Комплектность комплексов определяется индивидуальным заказом. В комплект поставки входят компоненты, указанные в таблице 3.

Таблица 3 - Комплектность

Наименование	Шифр	Количество
Блок контроля, управления и сигнализации	БлУ-46	Не менее 1
Блок питания	БП-65	Не менее 1
Аккумуляторы =12 B	A 512/65	Не менее 2
Пульт оператора ГРС	ПуУ-28	Определяется
		заказом
Комплект документации.		1

Поверка

осуществляется по документу МИ 2539-99 «ГСИ. Измерительные каналы контроллеров, измерительно-вычислительных, управляющих, программно-технических комплексов. Методика поверки» с изменением № 1, утвержденному ФГУП «ВНИИМС» 28.11.2011 г.

Основные средства поверки: калибраторы процессов многофункциональные Fluke 726. Пределы допускаемой основной погрешности воспроизведения напряжения постоянного тока в диапазоне от 0 до 20 В: $\pm (0,0001~\mathrm{U}+2~\mathrm{eд.мл.p.})$, где U - задаваемое напряжение. Пределы допускаемой основной погрешности воспроизведения силы постоянного тока в диапазоне от 0 до 24 мА: $\pm (0,0001~\mathrm{I}+2~\mathrm{eд.мл.p.})$, где I - задаваемая сила тока. Пределы допускаемой основной погрешности измерения силы постоянного тока в диапазоне от 0 до 24 мА: $\pm (0,0001~\mathrm{I}+2~\mathrm{eд.мл.p.})$, где I - измеряемая сила тока.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к комплексам программно-техническим контролируемого пункта «RTU - 4» и «RTU - 4М»

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия»

ТУ 424349.010-2014 Комплекс программно-технический контролируемого пункта «RTU-4» и «RTU 4M». Технические условия

Изготовитель

Общество с ограниченной ответственностью «Современные технологии измерения газа» (ООО «СовТИГаз»), г. Москва

117405, Москва, ул. Кирпичные Выемки, д. 3 Тел: (495) 381-25-10, факс: (495) 389-23-44

E-mail: <u>info@sovtigaz.ru</u>

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46 Тел./факс: (495)437-55-77 / 437-56-66

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

		С.С. Голубев
М.п.	« »	2016 г.