ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РГМЭК» (МУП «РГРЭС» 4 очередь)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РГМЭК» (МУП «РГРЭС» 4 очередь) (далее - АИИС КУЭ) предназначена для измерений активной и реактивной электроэнергии и мощности, сбора, обработки, хранения, формирования отчётных документов и передачи полученной информации заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерений.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень - измерительно-информационные комплексы (ИИК), включающие в себя измерительные трансформаторы тока (далее - TT) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее - TH) по ГОСТ 1983-2001 и счетчики активной и реактивной электрической энергии в режиме измерений активной электрической энергии по ГОСТ Р 52323-2005 и ГОСТ 30206-94, и в режиме измерений реактивной электрической энергии по ГОСТ Р 52425-2005 и ГОСТ 26035-83, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень - информационно-вычислительный комплекс (ИВК) включает в себя следующие компоненты: сервер сбора данных (далее - сервер СД) с программным комплексом (далее - ПК) «Энергосфера», устройство синхронизации времени УСВ-2, расположенные в помещении серверной МУП «РГРЭС»; сервер ГЦСОИ ООО «РГМЭК» в составе ИВК «ИКМ-Пирамида» с программным обеспечением (далее - ПО) «Пирамида 2000», **устройство** синхронизации времени УСВ-2, расположенные помещениях ГЦСОИ ООО «РГМЭК»; автоматизированные рабочие места персонала (APM); каналообразующую аппаратуру, технические средства ДЛЯ организации локальной вычислительной сети и разграничения прав доступа к информации.

Измерительные каналы (далее - ИК) состоят из двух уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи интерфейса RS-485 поступает на шлюз E-422, далее по каналу связи Ethernet на входы Wi-Fi роутера iRZ RU10w, после чего сигнал передаётся по каналу связи стандарта GSM на сервер СД, расположенный в серверной МУП «РГРЭС».

На сервере СД осуществляется вычисление электрической энергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление отчетных документов. Далее измерительная информация поступает в виде хml-файлов формата 80020 на сервер ГЦСОИ ООО «РГМЭК» по каналу связи Internet.

Передача информации от ГЦСОИ ООО «РГМЭК» в ПАК АО «АТС» за подписью ЭЦП субъекта ОРЭ, в филиал ОАО «СО ЕЭС» Рязанское РДУ и в другие смежные субъекты ОРЭ осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов формата 80020 в соответствии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в АО «АТС», ОАО «СО ЕЭС» и смежным субъектам» к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка электрической энергии и мощности.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учёта соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровни ИИК и ИВК. АИИС КУЭ оснащена устройствами синхронизации времени УСВ-2, синхронизирующими часы измерительных компонентов системы по сигналам проверки времени, получаемым от ГЛОНАСС/GPS-приемника. Пределы допускаемой абсолютной погрешности синхронизации фронта выходного импульса $1\,\Gamma$ ц по сигналам встроенного приемника ГЛОНАСС/GPS к шкале координированного времени UTC для УСВ-2 составляют не более $\pm 10\,$ мкс.

Сервер ИВК «ИКМ-Пирамида» периодически сравнивает свое системное время с соответствующим УСВ-2. Сличение часов сервера осуществляется не реже чем 1 раз в час, коррекция часов осуществляется независимо от наличия расхождений. Абсолютная погрешность текущего времени, измеряемого ИВК «ИКМ-Пирамида» (системное время) не более ±3 с/сут.

Сервер СД, установленный в МУП «РГРЭС», периодически сравнивает свое системное время с соответствующим УСВ-2. Сличение часов сервера осуществляется не реже чем 1 раз в час, коррекция часов осуществляется независимо от наличия расхождений.

Сравнение показаний часов счетчиков и сервера СД производится во время сеанса связи со счетчиками (1 раз в 30 минут). Корректировка часов счетчиков осуществляется при расхождении показаний с часами сервера СД на величину более ± 2 с, но не чаще 1 раза в сутки. Передача информации от счётчиков электрической энергии до сервера СД реализована с помощью каналов связи, задержки в каналах связи составляют не более 0.2 с.

Погрешность СОЕВ не превышает ±5 с.

Журналы событий счетчика электроэнергии и сервера отражают: время (дата, часы, минуты, секунды) до и после проведения процедуры коррекции часов указанных устройств.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000» и ПК «Энергосфера», в состав которых входят программы, указанные в таблицах 1а и 16. ПО «Пирамида 2000» и ПК «Энергосфера» обеспечивают защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Пирамида 2000» и ПК «Энергосфера».

Таблица 1a - Идентификационные данные ПО «Пирамида 2000»

таолица та тидентификационные данные 110 «тиражида 2000»										
Идентификационные признаки	Значение									
Идентификационное наименование ПО	CalcCli- ents.dll	CalcLeak- age.dll	Cal- cLosses.dl 1	Metrol- ogy.dll	Parse- Bin.dll	Par- seIEC.dll	ParseMod bus.dll	ParsePira mida.dll	Synchro- NSI.dll	VerifyTi- me.dll
Номер версии (идентификационный номер) ПО					3					
Цифровой иденти- фикатор ПО	e55712d0b 1b219065 d63da9491	b1959ff70 be1eb17c8 3f7b0f6d4	d79874d1 0fc2b156a 0fdc27e1c	52e28d7b 608799bb 3ccea41b	6f557f885 b7372613 28cd7780	48e73a92 83d1e664 94521f63	c391d642 71acf405 5bb2a4d3	ecf53293 5ca1a3fd 3215049a	530d9b01 26f7cdc2 3ecd814c	1ea5429b 261fb0e2 884f5b35
	14dae4	a132f	a480ac	548d2c83	5bd1ba7	d00b0d9f	fe1f8f48	f1fd979f	4eb7ca09	6a1d1e75
Алгоритм вычисления цифрового идентификатора ПО	MD5									

Таблица 1б - Идентификационные данные ПК «Энергосфера»

Идентификационные признаки	Значение			
Идентификационное наименование ПО	Pso_metr.dll			
Номер версии (идентификационный номер) ПО	6.5.109.4663			
Цифровой идентификатор ПО	cbeb6f6ca69318bed976e08a2bb7814b			
Алгоритм вычисления цифрового идентификатора ПО	MD5			

Уровень защиты ПО «Пирамида 2000» и ПК «Энергосфера» от непреднамеренных и преднамеренных изменений - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Состав 1-го и 2-го уровней ИК АИИС КУЭ и их метрологические характеристики

		И			-	еские характе- ки ИК*		
Номер ИК	Наименование точки измерений	TT	ТН	Счетчик электриче- ской энергии	Сервер	Вид элек- троэнергии	основной от- носительной	Пределы до- пускаемой от- носительной погрешности в рабочих усло- виях, (±δ) %
150	ТП-469 яч. б	ТПОЛ-10 Кл.т. 0,5S 600/5 Зав. № 20235 Зав. № 20203	3HOЛП-10 Кл.т. 0,5 10000:√3/100:√3 Зав. № 1004594 Зав. № 1004583 Зав. № 1004695	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5 Зав. № 0804140714	HP ProLiant DL360 G5 Зав. № 00040	Активная Реактивная	1,1	3,0 4,7
151	РП-60 яч.5	ТПОЛ-10 Кл.т. 0,5S 600/5 Зав. № 10592 Зав. № 1390	3HOЛ.06 Кл.т. 0,5 6000:√3/100:√3 Зав. № 8249 Зав. № 8248 Зав. № 8256	СЭТ-4ТМ.03.01 Кл. т. 0,5S/1,0 Зав. № 0120071777	ИВК «ИКМ- Пирамида» Зав. № 395	Активная Реактивная	1,3 2,5	3,3 6,4

*Примечания:

- 1 В качестве характеристик погрешности ИК установлены пределы допускаемой относительной погрешности ИК при доверительной вероятности, равной 0,95.
- 2 Характеристики погрешности ИК указаны для измерений активной и реактивной электроэнергии и средней мощности на интервале времени 30 минут.
 - 3 Основная погрешность рассчитана для следующих условий:
- параметры сети: напряжение (0.95-1.05)Uн; ток (1.0-1.2)Ін; соsj =0.9инд.; частота (50 ± 0.2) Γ ц;
 - температура окружающей среды: (23±2) °C.
 - 4 Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0,9-1,1)Uн₁; диапазон силы первичного тока (0,01-1,2)Ін₁; коэффициент мощности соѕ ϕ (sin ϕ) 0,5-1,0 (0,5-0,87); частота $(50\pm0,2)$ Γ ц;
 - температура окружающего воздуха от минус 45 до плюс 40 °C;
 - относительная влажность воздуха не более 98 % при плюс 25 °C;
 - атмосферное давление от 84,0 до 106,7 кПа.

Для счетчиков электрической энергии:

- параметры сети: диапазон вторичного напряжения (0,9-1,1)U $_1$; диапазон силы вторичного тока (0,01-1,2)I $_2$; диапазон коэффициента мощности $\cos\phi(\sin\phi)$ 0,5-1,0 (0,5-0,87); частота $(50\pm0,2)$ Γ $_4$;
 - магнитная индукция внешнего происхождения не более 0,5 мТл;
 - температура окружающего воздуха от минус 40 до плюс 60 °C;
 - относительная влажность воздуха не более 90 % при плюс 30 °C;
 - атмосферное давление от 70,0 до 106,7 кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220±10) В; частота (50±1) Гц;
- температура окружающего воздуха от плюс 15 до плюс 25 °C;
- относительная влажность воздуха не более 80 % при плюс 25 °C;
- атмосферное давление от 70,0 до 106,7 кПа.
- 5 Погрешность в рабочих условиях указана для тока $2 \% I_{\text{ном}}$ $\cos j = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от плюс 10 до плюс 35 °C.
- 6 Допускается замена ТТ, ТН и счетчиков на аналогичные утвержденных типов с такими же метрологическими характеристиками, какие приведены в таблице 2. Допускается замена УСВ-2 на однотипные утвержденного типа. Замена оформляется актом в установленном собственником АИИС КУЭ порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 7 Все измерительные компоненты АИИС КУЭ должны быть утверждены и внесены в Государственный реестр средств измерений.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее T=165000 ч, среднее время восстановления работоспособности t=2 ч;
- счётчик СЭТ-4TM.03 среднее время наработки на отказ не менее T=90000 ч, среднее время восстановления работоспособности t=2 ч;
- УСВ-2 среднее время наработки на отказ не менее T=35000 ч, среднее время восстановления работоспособности t=2 ч;
- сервер HP Proliant DL360 G5 среднее время наработки на отказ не менее T=256554 ч, среднее время восстановления работоспособности t=0.5 ч;

- ИВК «ИКМ-Пирамида» - среднее время наработки на отказ не менее T=100000 ч, среднее время восстановления работоспособности t=1 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике.
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и сервере;
 - пропадание и восстановление связи со счетчиком.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - счетчика электрической энергии;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера.
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - счетчика электрической энергии;
 - сервера.

Возможность коррекции времени в:

- счетчиках электрической энергии (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений;
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- счетчик электрической энергии тридцатиминутный профиль нагрузки в двух направлениях не менее 114 суток; при отключении питания не менее 5 лет;
- сервер хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на АИИС КУЭ типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на АИИС КУЭ и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование компонента	Тип компонента	№ Госреестра	Количество, шт.	
Трансформаторы тока	ТПОЛ-10	1261-08	4	
Трансформаторы напряжения	ЗНОЛП	23544-07	3	
Трансформаторы напряжения измерительные	3НОЛ.06	3344-04	3	
Счетчики электрической энергии	CЭT-4TM.03M	36697-12	1	
многофункциональные	C31-41W1.03W1	30077-12	1	
Счетчики электрической энергии	СЭТ-4ТМ.03	27524-04	1	
многофункциональные	C51-41W1.05	27324-04	1	
Устройства синхронизации времени	УСВ-2	41681-10	2	
Сервер	HP ProLiant		1	
Сервер	DL360 G5		1	
Комплексы информационно-вычислительные	ИКМ-Пирамида	45270-10	1	
Методика поверки			1	
Паспорт-формуляр	66992322.384106		1	
паспорт-формуляр	.104.ФО		1	

Поверка

осуществляется по документу МП 65426-16 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РГМЭК» (МУП «РГРЭС» 4 очередь). Измерительные каналы. Методика поверки», утвержденному ФБУ «Рязанский ЦСМ» в августе 2016 г. Знак поверки наносится на свидетельство о поверке АИИС КУЭ.

Документы на поверку измерительных компонентов:

- ТТ по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- ТН по ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- счетчик электрической энергии СЭТ-4ТМ.03М в соответствии с документом ИЛГШ.411152.145РЭ1 «Счетчики электрической энергии многофункциональные СЭТ-4ТМ.03М, СЭТ-4ТМ.02М. Руководство по эксплуатации. Часть 2. Методика поверки», утвержденным руководителем ГЦИ СИ ФБУ «Нижегородский ЦСМ» 04 мая 2012 г.;
- счетчик электрической энергии СЭТ-4ТМ.03 в соответствии с методикой поверки ИЛГШ.411152.124РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.124РЭ, согласованной с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 г.;
- устройство синхронизации времени УСВ-2 в соответствии с документом ВЛСТ 237.00.001И1 «Устройство синхронизации времени УСВ-2. Методика поверки», утвержденным ФГУП «ВНИИФТРИ» 12.05.2010 г.;
- ИВК «ИКМ-Пирамида» в соответствии с документом ВЛСТ 230.00.000 И1 «Комплексы информационно-вычислительные «ИКМ-Пирамида». Методика поверки», утвержденным ФГУП «ВНИИМС» в 2010 г.

Основные средства поверки:

- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;

2016 г.

- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе 66992322.384106.104.И3 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ООО «РГМЭК» (МУП «РГРЭС» 4 очередь). Руководство пользователя».

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «РГМЭК» (МУП «РГРЭС» 4 очередь)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

Изготовитель

Общество с ограниченной ответственностью «Энергоинтеграция»

(ООО «Энергоинтеграция»)

Адрес: 115114, г. Москва, ул. Дербеневская, д.1, стр.6

ИНН 7704760530 Тел.: (495) 665-82-06 E-mail: energo-in@inbox.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации метрологии и испытаний в Рязанской области» (ФБУ «Рязанский ЦСМ»)

Адрес: 390011, г. Рязань, Старообрядческий проезд, д. 5

Тел/факс: (4912)55-00-01/44-55-84

E-mail: asu@rcsm-ryazan.ru

Аттестат аккредитации ФБУ «Рязанский ЦСМ» по проведению испытаний средств измерений в целях утверждения типа RA.RU.311204 от 10.08.2015 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			С.С. Голубев
	М.п.	« »	2016 г