ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы портативные GX-6000

Назначение средства измерений

Газоанализаторы портативные GX-6000 предназначены для измерений объемной доли горючих (углеводородных) газов и водорода, а также вредных газов (сероводорода, оксида углерода, диоксида серы, диоксида азота, цианистого водорода, аммиака, хлора, диоксида углерода) и кислорода в воздухе рабочей зоны.

Описание средства измерений

Газоанализаторы портативные GX-6000 (далее - газоанализаторы) способны измерять одновременно до шести различных газов. Комбинации измеряемых газов зависят от типов используемых в газоанализаторах сенсоров (первичных преобразователей). В газоанализаторах используются термокаталитические сенсоры для измерения горючих газов, электрохимические сенсоры для измерения токсичных газов, гальванические для измерения кислорода, оптические для измерения горючих газов и диоксида углерода, а также фотоионизационные для измерения летучих органических соединений (ЛОС). Последние имеют два исполнения: одно для измерений в млд⁻¹ диапазоне, другое для измерений в млн⁻¹ диапазоне.

Конструктивно газоанализаторы выполнены одноблочными в ударопрочном пластмассовом корпусе, снабженном металлическим зажимом для крепления газоанализатора к каске, карману или поясному ремню работника.

Отбор пробы осуществляется встроенным насосом.

Электрическое питание газоанализаторов осуществляется от трёх щелочных батареек типа АА или литий-ионного аккумулятора.

Газоанализаторы имеют жидко-кристаллический монохромный цифровой дисплей с подсветкой, обеспечивающей отображение:

- результатов измерений содержания определяемых компонентов (до шести одновременно);
- текущего времени;
- уровня заряда аккумуляторов;
- двух порогов аварийной сигнализации;
- меню пользователя.

Газоанализаторы обеспечивают выполнение следующих функций:

- непрерывное измерение содержания определяемых компонентов;
- сравнение результатов измерений с заданными уровнями срабатывания сигнализации;
- память данных/журнал событий;
- самодиагностику газоанализатора при включении электрического питания.

Газоанализаторы осуществляют срабатывание сигнализации по двум порогам для каждого измерительного канала:

- звуковым сигналом;
- светодиодным индикатором;
- вибрационным сигналом тревоги;
- отображением на дисплее символов, обозначающих пороги срабатывания.

Газоанализаторы снабжены устройством, позволяющим сигнализировать о падении оператора.

Вывод данных на персональный компьютер осуществляется в лабораторных условиях при помощи ИК-порта.

Газоанализаторы выполнены во взрывозащищенном исполнении.

Взрывозащищенность газоанализатора обеспечивается следующими видами взрывозащиты: "искробезопасная электрическая цепь і" по ГОСТ Р МЭК 60079-11-2010 и конструктивным исполнением в соответствии с ГОСТ Р МЭК 60079-0-2011.

Общий вид газоанализатора представлен на рисунке 1. Опломбирование газоанализаторов не предусмотрено.

Рисунок 1 - Общий вид газоанализатора GX-6000

Программное обеспечение

Газоанализаторы имеют следующие виды программного обеспечения (ПО):

- встроенное;
- автономное.

Встроенное ПО выполняет следующие основные функции:

- приём и обработку измерительной информации от первичного измерительного преобразователя;
 - отображение результатов измерений на дисплее;
 - хранение результатов измерений;
 - ведение и хранение журнала событий.

Встроенное ПО реализует следующие расчетные алгоритмы:

- вычисления результатов измерений содержания определяемых компонентов по данным от первичного измерительного преобразователя;
- сравнение результатов измерений с заданными пороговыми значениями, вычисление значений STEL и TWA (усредненные показания соответственно за 15 мин. и 8 ч работы).

Встроенное ΠO идентифицируется при включении газоанализатора путем вывода на дисплей номера версии.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО:	05504
Номер версии (идентификационный номер) ПО	1.00
Цифровой идентификатор ПО:	F04E

Влияние встроенного ПО учтено при нормировании метрологических характеристик газоанализаторов. Уровень защиты - «высокий» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Метрологические характеристики газоанализаторов приведены в таблица 2-4.

Таблица 2 - Диапазоны измерений и пределы допускаемой основной погрешности

газоанализаторо	В				
			Пределы допускаемой		
Определяемый	1	Диапазоны измерений	основной погрешности		
компонент	показаний	, ,	$\Delta^{1)}$	$\delta^{2)}$, %	$\gamma^{3)}$, %
1	2	3	4	5	6
Водород и	от 0 до 100 % НКПР	от 0 до 10 включ. % НКПР	±2 %	-	-
углеводород-			НКПР		
ные газы СхНу		св. 10 до 40 включ. % НКПР	-	-	±5
(метан СН ₄ и		св. 40 до 50 включ. % НКПР	-	±5	-
др., термоката-					
литический					
сенсор)	1	,			
Сероводород	от 0 до 100 млн ⁻¹	от 0 до 30 млн	±3 млн ⁻¹	-	-
H_2S		от 0 до 100 млн ⁻¹	-	-	±5
Оксид	от 0 до 500 млн ⁻¹	от 0 до 20 включ. млн ⁻¹	±4 млн ⁻¹	-	-
углерода СО		св. 20 до 150 включ. млн ⁻¹	-	±20	-
		св. 150 до 500 включ. млн ⁻¹	-	-	±6
Кислород О2	от 0 до 40 % об.	от 0 до 10 включ. $\%$ об.	±0,5 % oб.	-	-
		св. 10 до 20 включ. % об.	-	-	$\pm 2,5$
	1	св. 20 до 40 включ. % об.	-	±2,5	-
Диоксид	от 0 до 99,9 млн ⁻¹	от 0 до 99,9 млн ⁻¹	-	-	±5
серы SO ₂	1	1			
Диоксид	от 0 до 20 млн ⁻¹	от 0 до 20 млн ⁻¹	-	-	±5
азота NO ₂		1			
Цианистый	от 0 до 15 млн ⁻¹	от 0 до 15 млн ⁻¹	-	-	±10
водород HCN		1			
Аммиак NH ₃	от 0 до 400 млн ⁻¹	от 0 до 75 млн ⁻¹	-	-	±5
	0 10 -1	от 0 до 400 млн ⁻¹	-	-	±5
Хлор Cl ₂	от 0 до 10 млн ⁻¹	от 0 до 3 млн ⁻¹	-	-	±10
	0 100/ ~	от 0 до 10 млн ⁻¹	-	-	±5
Диоксид	от 0 до 10 % об.	от 0 до 10000 млн ⁻¹	-	-	±2
углерода СО2		от 0 до 5 % об.	-	-	±5
(оптический					
сенсор)	0 100.0/ 6	0 1000/ 5			
Метан СН ₄	от 0 до 100 % об.	от 0 до 100 % об.	-	-	±5
(оптический сенсор)					
<u> </u>	от 0 до 30 % об.	от 0 до 100 % НКПР			±5
Углеводород- ные газы СхНу	от о до <i>5</i> 0 % оо.	от 0 до 30 % об.	- -	<u>-</u>	±3 ±7
ные газы Схпу (метан СН ₄ и		01 0 до 30 70 оо.	-	_	/
др., оптический					
др., оптический сенсор)					
Летучие	от 0 до 50000 млд ⁻¹	от 0 до 5000 включ. млд ⁻¹			±2
органические	от о до зоооо млд	св. 5000 до 50000 включ. млд	_	±2	
соединения	от 0 до 6000 млн $^{-1}$	от 0 до 6000 включ. млн ⁻¹	_		±2
осщинии	51 0 A0 0000 mm	or o go oooo bigiio i, maiii		l	

¹⁾ Пределы допускаемой абсолютной погрешности; 2) Пределы допускаемой относительной погрешности; 3) Пределы допускаемой приведенной погрешности.

Таблица 3 - Пределы допускаемой дополнительной погрешности газоанализаторов, в долях

от предела допускаемой основной погрешности

	От влияния	От влияния изменения	От влияния
Опродолятий	изменения	относительной	изменения
Определяемый компонент	температуры в	влажности окружающей	атмосферного
KUMIIUHCHI	пределах рабочих	среды в пределах	давления в пределах
	условий	рабочих условий	рабочих условий
Углеводородные			
газы и водород	0,5	0,5	0,4
Токсичные газы,			
кислород и ЛОС	1,0	0,5	0,3

Таблица 4 - Пределы допускаемого времени установления показаний газоанализаторов

Определяемый компонент	T _{0,9}	T _{0,63}
Углеводородные газы и водород (H ₂), с, не более	30	-
Токсичные газы (CO, H_2S , SO_2 , NO_2 , HCN), c, не более	30	-
Токсичные газы (NH ₃ , Cl ₂), с, не более	-	30
Кислород (О2), с, не более	20	-
ЛОС и диоксид углерода (CO ₂), с, не более	15	-

Основные технические характеристики приведены в таблице 5.

Таблица 5 - Технические характеристики газоанализаторов

Наименование характеристики	Значение	
Напряжение питания от источника постоянного тока, В:		
- три батарейки AA или аккумуляторный блок BUL-6000	4,5	
Время непрерывной работы, ч, не менее:		
- c BUD-6000	8	
- c BUL-6000	14	
Габаритные размеры (ширина, высота, глубина), мм, не более	70x201x54	
Масса, г, не более	500	
Маркировка взрывозащиты газоанализатора по ГОСТ Р МЭК		
60079-0-2011	OEx ia IIC T4 Ga	
Степень защиты корпуса газоанализатора по ГОСТ 14254-96	IP 67	
Рабочие условия эксплуатации:		
- температура окружающей среды, °С	от -20 до +50	
- относительная влажность воздуха, %, не более	95 (без конденсации)	
- атмосферное давление, кПа	от 90 до 110	

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и в виде наклейки на заднюю поверхность корпуса газоанализатора.

Комплектность средства измерений

Комплектность газоанализаторов приведена в таблице 6.

Таблица 6 - Комплектность газоанализаторов

Наименование	Обозначение	Кол-во
Газоанализатор портативный	GX-6000	1
Зарядное устройство	BC-6000	1
Защитный чехол	-	1
Защитная пленка для экрана	-	1
Конический зонд	-	1
Программное обеспечение на CD-диске	-	1
Руководство по эксплуатации	-	1
Методика поверки	МП 2017-4	1

Поверка

осуществляется по документу МП 2017-4 «Инструкция. Газоанализаторы портативные GX-6000. Методика поверки», утвержденному Φ ГУП «ВНИИ Φ ТРИ» 31 октября 2017 г.

Основные средства поверки:

- рабочий эталон 1-го разряда по ГОСТ 8.578-2014 - генератор газовых смесей ГГС-03-03, рег. № 62151-15 в комплекте со стандартными образцами состава: газовые смеси H_2S/N_2 , CO/N_2 , Cl_2/N_2 , NO_2/N_2 , HCN/N_2 , NH_3/N_2 , SO_2/N_2 , CO_2/N_2 , O_2/N_2 - ΓCO 10546-2014; H_2/B 03дух, CH_4/B 03дух,

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится в виде наклейки на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационных документах.

Нормативные и технические документы, устанавливающие требования к газоанализаторам портативным GX-6000

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.

ГОСТ Р 52350.29-1-2010 Взрывоопасные среды. Часть 29-1. Газоанализаторы. Общие технические требования и методы испытаний газоанализаторов горючих газов.

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 12.1.005-88 Общие санитарно-гигиенические требования к воздуху рабочей зоны.

ГОСТ 8.578-2014 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.

Техническая документация фирмы-изготовителя «Riken Keiki Co, Ltd», Япония.

Изготовитель

Фирма «Riken Keiki Co, Ltd», Япония

Адрес: 2-7-6 Azusawa, Itabashi-ku, Tokyo, 174-8744, Japan

Тел.: + 81 3 3966 1113 Факс: + 81 3 3558 0110

E-mail: intdept@rikenkeiki.co.jp

Заявитель

Представительство фирмы «Тайрику Трейдинг Ко., Лтд.» (Япония)

ИНН 9909005080

Адрес: 119049, г. Москва, ул. Коровий Вал, д. 7 стр. 1 пом. XII

Тел.: +7 (499) 237-18-82 Факс: +7 (495) 931-99-47 E-mail: info@tairiku.info

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт физико-технических и радиотехнических измерений»

Адрес: 141570, Московская область, Солнечногорский район, п/о Менделеево

Юридический адрес: 141570, Московская область, Солнечногорский район, рабочий поселок Менделеево, промзона ВНИИФТРИ, корпус 11

Тел.: +7 (495) 526-63-00 Факс: +7 (495) 526-63-00 E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п. « ___ » _____ 2018 г.