ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи уровня JUPITER 200

Назначение средства измерений

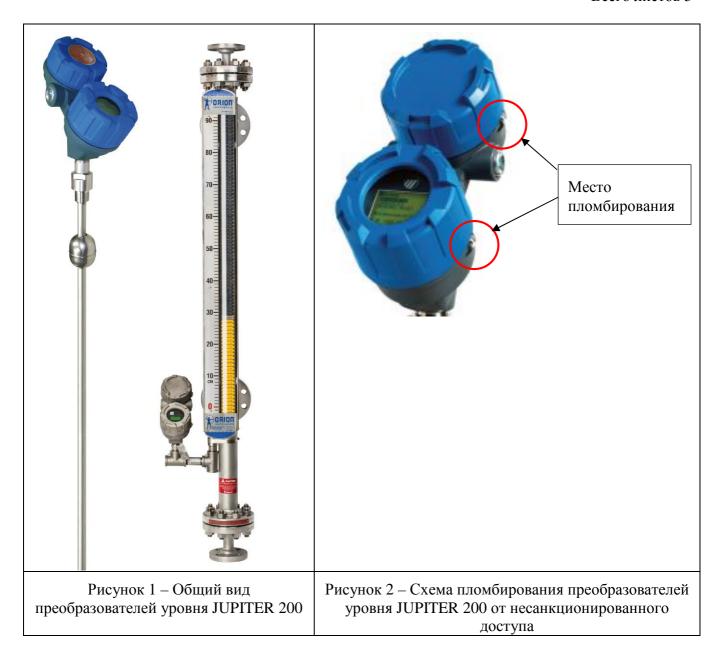
Преобразователи уровня JUPITER 200 (далее – преобразователи) предназначены для измерений уровня жидкостей и уровня границы раздела сред жидкостей, преобразований измеренных значений в выходные аналоговые сигналы силы постоянного тока и выходные цифровые сигналы.

Описание средства измерений

Принцип действия преобразователей основан на явлении магнитострикции. При измерении уровня контролируемой среды на волновод подается электрический импульс силы постоянного тока. Взаимодействие электрического импульса силы постоянного тока с постоянным магнитным полем поплавка приводит к возникновению волны механического напряжения, распространяющейся вдоль волновода с известной постоянной скоростью. Пьезомагнитный чувствительный элемент, размещенный в электронном блоке, преобразует полученное механическое напряжение в электрический импульс. После этого определяется расстояние до контролируемой среды, пропорциональное интервалу времени между подачей электрического импульса силы постоянного тока и обратным импульсом. Далее расстояние до контролируемой среды преобразуется в выходной аналоговый сигнал силы постоянного тока и выходной цифровой сигнал, далее передается на устройство отображения информации или внешнюю систему управления.

Преобразователи состоят из электронного блока, зонда с магнитострикционным волноводом внутри, магнитного поплавка или магнитного указателя уровня.

Электронный блок (далее - ЭБ) преобразователей имеет кнопки для настройки и устройство отображения информации на встроенном жидкокристаллическом (далее - ЖК) дисплее. Преобразователи помещены в алюминиевый корпус или корпус из нержавеющей стали с двумя отделениями для разделения цепей питания и электроники. Для преобразователей имеется возможность осуществлять цифровую связь. Протоколы обмена данными (HART или Fieldbus) устанавливаются на заводе-изготовителе по требованию заказчика.


Зонд выполнен из нержавеющей стали (с электрополировкой или без нее), или из сплавов цветных металлов (хастелоя С или монеля). Зонд представляет собой направляющую трубу с магнитострикционным волноводом внутри.

Магнитный поплавок преобразователей может быть выполнен из нержавеющей стали, из титана или хастелоя С. Преобразователи имеют два исполнения: для погружного или наружного монтажа. В случае погружного монтажа магнитный поплавок имеет кольцеобразную конструкцию и перемещается по поверхности направляющей трубы. В случае наружного монтажа преобразователи используются вместе с магнитным указателем уровня (со свободно перемещающимся магнитным поплавком), который непосредственно связан с резервуаром таким образом, что в нем создаются условия, аналогичные условиям в резервуаре.

Маркировка взрывозащиты: 0Ex іа IIC T4 Ga или Ga/Gb Ex d IIC T6. Степень защиты оболочки корпусов преобразователей от внешних воздействий по ГОСТ 14254-2015 (IEC 60259:2003) – IP66.

Крышка ЭБ преобразователей пломбируется специальной мастикой, закрывающей доступ к фиксирующим винтам.

Общий вид преобразователей представлен на рисунке 1. Схема пломбирования от несанкционированного доступа преобразователей представлена на рисунке 2.

Программное обеспечение

Преобразователи имеют встроенное программное обеспечение (далее – ПО), которое идентифицируется путем вывода на дисплей электронного блока номера версии. Встроенное ПО (микропрограмма) реализовано аппаратно и является метрологически значимым. Метрологические характеристики преобразователей нормированы с учетом влияния встроенного ПО. Исполняемый код программы во внутренней памяти микроконтроллера защищен циклической контрольной суммой, которая непрерывно контролируется системой диагностики. Метрологические коэффициенты и заводские параметры защищены аппаратной перемычкой защиты записи и не доступны для изменения без вскрытия корпуса и нарушения пломб.

Встроенное ПО имеет цельную структуру и обеспечивает:

- обработку и передачу измерительной информации от первичного измерительного преобразователя;
 - отображение результатов измерений на встроенном ЖК-дисплее;
- формирование выходного аналогового сигнала силы постоянного тока и выходного цифрового сигналов;
 - диагностику аппаратной части преобразователей. Уровень защиты встроенного ПО «высокий» в соответствии с Р 50.2.077-2014. Идентификационные данные встроенного ПО приведены в таблице 1.

Таблица 1 – Идентификационные данные встроенного ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	firmware
Номер версии (идентификационный номер) ПО	3.X
Цифровой идентификатор ПО	3EF0

Метрологические и технические характеристики

Таблица 2 – Метрологические и технические характеристики

Наименование характеристики	Значение
Диапазон измерений уровня жидкостей, м	от 0,05 до 5,70
Диапазон измерений уровня границы раздела сред жидкостей, м	от 0,10 до 5,60
Пределы допускаемой абсолютной погрешности измерений и	01 0,10 до 3,00
преобразований уровня жидкостей (уровня границы раздела сред	±1
жидкостей), мм	<u></u> 1
Выходные сигналы:	от 4 до 20
- аналоговый силы постоянного тока, мА	HART или
- цифровой	Fieldbus
Потребляемая мощность, Вт, не более	0,7
Габаритные размеры ЭБ, мм, не более	0,7
- длина	330
	188
- ширина - высота	111
	16
Диаметр направляющей трубы зонда, мм, не более	
Длина зонда, м	от 0,15 до 5,70
Степень защиты оболочки по ГОСТ 14254-2015	IP66
Предельно допустимое давление контролируемой среды при	
температуре +40 °C для преобразователей с поплавком из материала,	
МПа:	2.20
- нержавеющая сталь	2,28
- титан	2,62
- хастелой С	1,86
Диапазон температур контролируемой среды*, °C:	
- при погружном монтаже	от -40 до +260
- при наружном монтаже	от -196 до +450
Рабочие условия измерений:	
- температура окружающей среды, °С	от -55 до +70
- относительная влажность окружающего воздуха, %	от 5 до 95 (без
	конденсации)
Масса ЭБ с корпусом из материала, кг, не более	
- алюминий	2,7
- нержавеющая сталь	5,7
Напряжение питания постоянного тока, В	от 12,0 до 28,4
Средняя наработка на отказ, ч	80 000
Средний срок службы, лет	15
Маркировка взрывозащиты	0Ex ia IIC T4 Ga
	Ga/Gb Ex d IIC T6
Примечание - * - в зависимости от заказа	

Знак утверждения типа

наносится на корпус преобразователей в виде наклейки, а также на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 3 – Комплектность средства измерений

Наименование	Обозначение	Количество
Преобразователи уровня JUPITER 200*	-	1 шт.
Магнитный указатель уровня**	-	1 шт.
Руководство по эксплуатации	-	1 экз.
Методика поверки	ИЦРМ-МП-004-19	1 экз.

Примечания:

- * при использовании преобразователей для измерений границы раздела жидких сред по требованию заказчика поставляется 2 магнитных поплавка.
 - ** поставляется по требованию заказчика

Поверка

осуществляется по документу ИЦРМ-МП-004-19 «Преобразователи уровня JUPITER 200. Методика поверки», утвержденному ООО «ИЦРМ» 25.01.2019 г.

Основные средства поверки:

- стенд для поверки и калибровки средств измерений уровня ЭЛМЕТРО СПУ (регистрационный номер в Федеральном информационном фонде 56506-14);
- мультиметр 3458A (регистрационный номер в Федеральном информационном фонде 25900-03);
- рулетка измерительная металлическая Р30Н2Г (регистрационный номер в Федеральном информационном фонде 60606-15);
- термометр цифровой эталонный ТЦЭ-005 модификации ТЦЭ-005/М3 (регистрационный номер в Федеральном информационном фонде 40719-15);
- термометр сопротивления платиновый вибропрочный эталонный ПТСВ-9-2 (регистрационный номер в Федеральном информационном фонде 65421-16).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на свидетельство о поверке преобразователей.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к преобразователям уровня JUPITER 200

ГОСТ 28725-90 Приборы для измерения уровня жидкостей и сыпучих материалов. Общие технические требования и методы испытаний

Техническая документация изготовителя

Изготовитель

«Magnetrol International n.v.», Бельгия Адрес: Heikensstraat 6, 9240 Zele, Belgium

Телефон (факс): +32 52 45 11 11 (+32 52 45 09 93)

Web-сайт: <u>www.magnetrol.com</u> E-mail: info@magnetrol.be

Заявитель

Представительство компании с ограниченной ответственностью

«Магнетрол Интернэшнл»

ИНН 9909323340

Адрес: 190013, г. Санкт-Петербург, ул. Рузовская д. 8 Б, офис 400А

Телефон: +7 (812) 320-70-87 Web-сайт: <u>www.magnetrol.ru</u> E-mail: info@magnetrol.ru

Испытательный центр

Общество с ограниченной ответственностью «Испытательный центр разработок в области метрологии»

Адрес: 117546, г. Москва, Харьковский проезд, д.2, этаж 2, пом. І, ком. 35,36

Телефон (факс): +7 (495) 278-02-48

E-mail: info@ic-rm.ru

Аттестат аккредитации ООО «ИЦРМ» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311390 от 18.11.2015 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

A.B	. Кулешо

М.п. «____»____2019 г.