ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дифрактометры рентгеновские ДРОН-7М

Назначение средства измерений

Дифрактометры рентгеновские ДРОН-7М (далее – дифрактометры) предназначены для измерений интенсивности и углов дифракции рентгеновского излучения, рассеянного на кристаллическом объекте при решении задач рентгенофазового анализа материалов.

Описание средства измерений

Принцип действия дифрактометров основан на регистрации дифрагированных рентгеновских лучей от атомных плоскостей кристаллической решетки исследуемого вещества. В дифрактометрах реализована рентгенооптическая схема Брегга-Брентано.

Дифрактометры конструктивно представляют из себя стационарные напольные приборы модульной архитектуры. Дифрактометры выполнены в виде приборного каркаса, состоящего из стойки питания и управления и установленного на ней рентгенозащитного кабинета. В рентгенозащитном кабинете располагается стойка дифрактометрическая, включающая в себя двухкружный гониометр. В стойке питания и управления располагаются высоковольтный источник питания рентгеновской трубки, блок управления и сбора данных, блок управления приводом. На верхней крышке приборного каркаса находится фонарь. На передних панелях приборного каркаса находятся аварийные стоп-кнопки.

Дифрактометрическая стойка предназначена для формирования первичного и регистрации дифрагированного пучков рентгеновских лучей, установки держателя (приставки) с анализируемым материалом, углового перемещения по заданному алгоритму держателя образца и кронштейна с блоком детектирования. Рентгеновское излучение от рентгеновской трубки, направленное на анализируемый материал, отражается от кристаллографических (атомных) плоскостей анализируемого материала и фокусируется на приемной щели блока детектирования. Опционно в дифрактометрической стойке могут устанавливаться монохроматоры на первичном и/или дифрагированном пучках. В конструкции дифрактометров предусмотрена блокировка дверей с целью предотвращения проникновения в рентгенозащитный кабинет в процессе измерения.

Высоковольтный источник питания обеспечивает питание рентгеновской трубки, регулирование режима ее работы и выполнение операций по идентификации неисправностей и отработке аварийных ситуаций. Блок управления приводом предназначен для управления приводами углового перемещения, коммутации сигналов управления и питающих напряжений от блока управления и сбора данных на исполнительные механизмы, блокировки. Блок управления и сбора данных предназначен для сбора, обработки, регистрации электрического сигнала, преобразованного из рентгеновского излучения, формирования сигналов управления приводами углового перемещения в различных режимах сбора данных.

Для управления дифрактометрами используется программное обеспечение «Программный комплекс управления и сбора данных дифрактометров общего назначения Data Collection», состоящее из двух программ: программа нижнего уровня установлена в промышленном ПК, расположенном в блоке управления и сбора данных, программа верхнего уровня установлена на внешнем компьютере.

Общий вид дифрактометров приведен на рисунке 1.

Предусмотрено пломбирование корпусов блоков, расположенных в стойке питания и управления (высоковольтный источник питания рентгеновской трубки, блок управления и сбора данных, блок управления приводом) посредством применения пломбировочных наклеек.



Рисунок 1 – Общий вид дифрактометров рентгеновских ДРОН-7М

Программное обеспечение

Дифрактометры рентгеновские ДРОН-7М оснащаются программным обеспечением «Программный комплекс управления и сбора данных дифрактометров общего назначения — Data Collection» (далее ПО Data Collection), которое управляет работой дифрактометра, отображает результаты, обрабатывает, передает и хранит полученные данные. ПО Data Collection состоит из программы нижнего уровня ДРОН-7М, которая является встроенным ПО и установлена в промышленном ПК, расположенном в блоке управления и сбора данных, и программы верхнего уровня Сбор данных — DataCol, которая является автономным ПО и установлена на внешнем компьютере. ПО Data Collection является полностью метрологически значимым. Уровень защиты ПО Data Collection от непреднамеренных и преднамеренных изменений соответствует «среднему» уровню по Р 50.2.077-2014. Влияние ПО Data Collection на метрологические характеристики дифрактометров рентгеновских ДРОН-7М учтено при их нормировании. Идентификационные данные ПО Data Collection приведены в таблице 1.

Таблица 1 – Идентификационные данные ПО «Программный комплекс управления и сбора данных дифрактометров общего назначения Data Collection»

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	Программа верхнего уровня Сбор данных – DataCol	Программа нижнего уровня ДРОН-7М	
Номер версии (идентифика- ционный номер) ПО	не ниже 7.00.00 ¹⁾	не ниже 0.2.3	
Цифровой идентификатор метрологически значимого файла ПО	0хA5E198FA (файл DataCol.exe для версии 7.00.112)	0x1890 (для версии 0.2.3)	
Алгоритм расчета цифрового идентификатора	CRC32	CRC-16	
1) Версия ПО может им	иеть дополнительные цифровые	суффиксы (от 1 до 100)	

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики

таолица 2 - Метрологические характеристики	
Наименование характеристики	Значение
Диапазон измерений углов дифракции 2Ј, градус	от -100 до +165
Пределы допускаемой абсолютной погрешности измерения угловых	
положений дифракционных максимумов, градус	± 0.02
Пределы допускаемой основной относительной погрешности скоро-	
сти счета импульсов рентгеновского излучения, %	$\pm 0,\!20$
Диапазон показаний углов дифракции для держателя образца J,	
градус	от 0 до 360
Пределы допускаемой дополнительной относительной погрешности	
скорости счета импульсов рентгеновского излучения при изменении	
температуры окружающей среды на каждые 10 °C в диапазоне тем-	
ператур условий эксплуатации, %	±2
Пределы допускаемой дополнительной относительной погрешности	
скорости счета импульсов рентгеновского излучения при изменении	
на ± 10 % напряжения питающей сети, %	±0,8
Скорость угловых перемещений блока детектирования и образца,	
градус/мин, не менее	500
Нормальные условия измерений:	
- температура окружающей среды, °С	от +15 до +25
- напряжение электрического питание сети переменного тока, В	220

Таблица 3 – Основные технические характеристики

11	n
Наименование характеристики	Значение
Габаритные размеры (длина × ширина × высота), мм, не более	1100×1050×1800
Масса, кг, не более	520
Потребляемая мощность, кВ А, не более	3,5
Электрическое питание осуществляется от сети переменного тока:	
- диапазон напряжения, В	от 198 до 242
- частотой, Гц	от 49 до 51

Продолжение таблицы 3

Наименование характеристики	Значение
Электрическое питание осуществляется от сети переменного тока:	
диапазон напряжения, В	от 198 до 242
частотой, Гц	от 49 до 51
Время установления рабочего режима, мин, не более	60
Срок службы, лет, не менее	10
Средняя наработка дифрактометра на отказ, ч	10000
Условия эксплуатации:	
- температура окружающей среды, °С	от +10 до +35
- атмосферное давление, кПа	от 84,0 до 106,7
- относительная влажность при температуре +25 °C, %, не более	80

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации методом компьютерной графики и на заднюю панель корпуса дифрактометра в виде специальной таблички.

Комплектность средства измерений

Таблица 4 - Комплектность дифрактометров

Наименование	Обозначение	Количество
Трубка рентгеновская типа БСВ ²⁾ , конструктивное ис-	-	1 шт.
полнение 3		
Блок детектирования сцинтилляционный БДС-25-04Б	Яб2.204.110-16	1 шт.
Блок управления и сбора данных	Яб2.390.648-01	1 шт.
Блок управления приводом	Яб2.390.650	1 шт.
Высоковольтный источник питания Spellman DF60N3X4253	-	1 шт.
Стойка дифрактометрическая	Яб2.702.246	1 шт.
Каркас приборный	TA07.4.137.223	1 шт.
Комплект запасных частей, инструмента, принадлежностей и сменных частей	Яб4.078.152	1 комплект
Комплект монтажных частей	Яб4.075.490	1 комплект
Комплект монтажных частей (кабели)	Яб4.075.477-01	1 комплект
Компьютер с периферийными устройствами 1)	-	1 комплект
Программное обеспечение «Программный комплекс управления и сбора данных дифрактометров общего назначения – Data Collection» Установочный комплект.	Яб 00.133-01	1 CD-диск
Дифрактометры рентгеновские ДРОН-7М. Руководство по эксплуатации	ТА07.1.210.079 РЭ	1 экз.
«Программный комплекс управления и сбора данных дифрактометров общего назначения – Data Collection». Руководство оператора	-	1 экз.
Дифрактометр рентгеновский ДРОН-7М. Паспорт	ТА07.1.210.079 ПС	1 экз.
Методика поверки	МП-242-0313-2019	1 экз.

¹⁾ Поставляется по заказу

²⁾ Допускается комплектация рентгеновской трубкой типа БСВ27, БСВ28 или БСВ29 с необходимым зеркалом анода и соответствующим бета-фильтром

Поверка

осуществляется по документу МП-242-0313-2019 «ГСИ. Дифрактометры рентгеновские ДРОН-7М. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева» 26 августа 2019 г.

Основные средства поверки:

- стандартный образец дифракционных свойств кристаллической решетки (оксид алюминия) (SRM 1976b) ГСО 10475-2014;
- стандартный образец дифракционных свойств кристаллической решетки (оксид алюминия) (SRM 1976b) ГСО 10440-2014.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Знак поверки наносится на переднюю панель корпуса дифрактометра, как показано на рисунке 1, и (или) на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе; при использовании в сфере государственного регулирования обеспечения единства измерений дифрактометр применяется в соответствии с аттестованными методиками (методами) измерений.

Нормативные и технические документы, устанавливающие требования к дифрактометрам рентгеновским ДРОН-7М.

ТУ 4276-087-00227703-2013. Дифрактометры рентгеновские ДРОН-7М. Технические условия

Изготовитель

Акционерное общество «Инновационный центр «Буревестник»

(АО «ИЦ «Буревестник»)

ИНН 7814687586

Адрес: 197350, г. Санкт-Петербург, ул. Летчика Паршина, д. 3 стр. 1

Телефон: +7 (812) 676-10-01, факс: +7 (812) 528-66-33

Web-сайт: www.bourevestnik.ru

E-mail: bourevestnik@bourevestnik.spb.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19

Телефон: +7 (812) 251-76-01 Факс: +7 (812) 713-01-14 Web-сайт: www.vniim.ru E-mail: info@vniim.ru

Регистрационный номер RA.RU.311541 в Реестре аккредитованных лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «___ » _____ 2019 г.