УТВЕРЖДЕНО

приказом Федерального агентства по техническому регулированию и метрологии от «24» октября 2022 г. № 2665

Лист № 1 Всего листов 4

Регистрационный № 87166-22

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Прибор для измерений отклонений формы и расположения поверхностей вращения FMS 8200

Назначение средства измерений

Прибор для измерений отклонений формы и расположения поверхностей вращения FMS 8200 (далее по тексту – прибор) предназначен для измерений единицы длины в области измерений отклонений формы и расположения поверхностей вращения деталей.

Описание средства измерений

Принцип действия прибора основан на ощупывании неровностей исследуемой поверхности щупом и преобразовании возникающих при этом механических колебаний щупа в изменения напряжения, пропорциональные этим колебаниям, которые усиливаются и преобразуются в процессоре.

Прибор состоит из механической части, представляющей собой измерительную машину, электрошкафа, персонального компьютера с периферийными устройствами (стол, монитор, принтер) и передвижного пульта управления.

На каменном основании измерительной машины закреплены вертикальная ось Z и горизонтальные оси (направления X и Y), перпендикулярные друг другу. Стол для установки деталей расположен на основании и двигается в направлениях X и Y с помощью аэростатических подшипников. Измерительный шпиндель (ось C) и ось R для крепления и перемещения датчика по горизонтали закреплены на кронштейне на оси Z. Обе оси перемещаются на аэростатических подшипниках. Ось R оснащена регулировкой и защитой от столкновений. Датчик преобразует геометрические отклонения формы поверхности в изменения электрического сигнала, пропорциональные линейным перемещениям щупа.

Электронный блок осуществляет обработку электрических сигналов, поступающих с датчика, исполняет функции управления механическими элементами (шпинделем, перемещениями датчика).

Компьютер позволяет провести расчет параметров, сохранить или отобразить протокол результатов измерений с возможностью вывода на монитор.

Приборы позволяют осуществить математическую обработку результатов измерений следующими методами:

- алгоритмическая фильтрация фильтрами Гаусса;
- расчет аппроксимирующих окружностей по методу наименьших квадратов, окружностей минимальной зоны, вписанной и описанной окружностей;
- расчет аппроксимирующих прямых по методу наименьших квадратов, минимальной зоны;

К прибору для измерений отклонений формы и расположения поверхностей вращения FMS 8200 данного типа относится прибор FMS 8200 с заводским номером № F8200 030 0366.

Пломбирование прибора не предусмотрено

Нанесение знака поверки на прибор не предусмотрено. Заводской номер в виде буквенно-цифрового обозначения нанесен методом гравировки на табличку, закрепленную на каменном основании прибора.

Рисунок 1 — Общий вид прибора для измерений отклонений формы и расположения поверхностей вращения FMS 8200

Программное обеспечение

Прибор для измерений отклонений формы и расположения поверхностей вращения FMS 8200 имеет в своем составе программное обеспечение (ПО), осуществляющее измерительные функции, функции расчета параметров и функции управления.

Таблица 1 - Идентификационные данные программного обеспечения (ПО)

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	TURBO FORM		
Номер версии (идентификационный номер) ПО	v 9.0 и выше		
Цифровой идентификатор ПО	-		

За метрологически значимое принимается все ПО. При работе с прибором пользователь не имеет возможности влиять на процесс расчета и не может изменять полученные в ходе измерений данные. Защитой ПО является трехуровневый пароль и функция блокировки настройки устройства. Уровень защиты программного обеспечения приборов «средний» в соответствии с Р 50.2.077-2014.

Метрологические и технические характеристики

Таблица 2 - Метрологические характеристики прибора

Диапазон измерений отклонений от круглости, мкм	± 500 (при длине измерительного наконечника			
	53 мм)			
Пределы допускаемой относительной погрешности	±3			
измерений отклонений от круглости, $\%^{1)}$	±3			
Предел допускаемой абсолютной радиальной				
погрешности шпинделя, мкм (где Н – длина держателя	0,1+0,0008·H			
щупа, мм) ²⁾				
Предел допускаемой абсолютной погрешности торцевого				
биения, мкм (R – расстояние от центра вращения	0,1+0,0008·R			
шпинделя, мм $)^{2)}$				
¹⁾ При следующих условиях измерения: метод анализа – LSCI, фильтр Гаусса 50%, полоса				
пропускания фильтра 0-500, скорость вращения – 5 об/мин				
²⁾ При следующих условиях измерения: метод анализа – LSCI, фильтр Гаусса 50%, полоса				
пропускания фильтра 0-15, скорость вращения – 5 об/мин				

Таблица 3 – Технические характеристики прибора

гаолица 3 – гехнические характеристики приоора			
Диапазон перемещений по оси Z, мм	от 0 до 1300		
Предел допускаемого отклонения от прямолинейности			
перемещений по оси Z, мкм			
- на длине 500 мм	2,6		
Диапазон перемещений по оси Х, мм	От 0 до 800		
Диапазон перемещений по оси Y, мм	От 0 до 300		
Радиус наконечника щупа, мм	0,3		
Измерительное усилие, Н	0,02		
Масса, кг, не более	7800		
Допускаемая масса детали, кг, не более	300		
Габаритные размеры, мм, не более			
- длина	2630		
- ширина	1704		
- высота	3416		
Высота измеряемой детали, мм,	не более 925		

Таблица 4 Условия эксплуатации

- рабочая область значений температур, °C	От +19 до +21
-допускаемый временной градиент температуры °С/ч	2
- относительная влажность воздуха, %, не более	70

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации типографским методом.

Комплектность средства измерений

Таблица 6 – Комплектность средства измерений

Наименование	Обозначение	Комплектность
Измерительная машина	FMS 8200	1 шт.
Электрошкаф		1 шт.
ПК с монитором, мышью, клавиатурой, принтером		1 шт.
Пульт управления		1 шт.
Датчик	ST 200	1 шт.
Руководство по эксплуатации		1 компл.

Сведения о методиках (методах) измерений

приведены в разделе 4 «Описание механических компонентов» Руководства по эксплуатации.

Нормативные документы, устанавливающие требования к средству измерений

Техническая документация фирмы изготовителя.

Правообладатель

«Hommel-Etamic GmbH», Германия

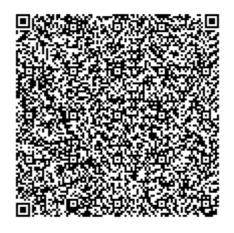
Адрес: Alte Tuttlinger Straße 20 D-78056 VS-Schwenningen

Тел.: +49 7720-602 - 0, Факс: +49 7720-602-123 E-mail: info@hommel-etamic.de

Изготовитель

«Hommel-Etamic GmbH», Германия

Адрес: Alte Tuttlinger Straße 20 D-78056 VS-Schwenningen


Тел.: +49 7720-602 - 0, Факс: +49 7720-602-123 E-mail: info@hommel-etamic.de

Испытательный центр

Федеральное государственное бюджетное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГБУ «ВНИИМС») ИНН 9729315781

Адрес: 119361, г. Москва, ул. Озерная, д. 46 Телефон: +7 495 437-55-77, факс: +7 495 437-56-66 Web-сайт: www.vniims.ru; E-mail: office@vniims.ru

Уникальный номер записи в реестре аккредитованных лиц № 30004-13.

