НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ «ДОЗА»

ДОЗИМЕТР

РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ КЛИНИЧЕСКИЙ ДРК-1

Руководство по эксплуатации
ФВКМ.412113.017PЭ

красяией ленты;
7) установить на место крышку принтера, закрутив винты.

4 МЕТОДИКА ПОВЕРКИ

4.1 Общие требования

4.1 Поверку дозиметра проводят юридические лица или индивидуальные предприниматели, аккредитованные в установленном порядке на право поверки данных средств измерений. Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются ПР 50.2.006-94 «Государственная система обеспечения единства измерений. Порядок проведения поверки средств измерений».

Поверке подлежат все вновь выпускаемые, выходящие из ремонта и находящиеся в эксплуатации дозиметры.

Первичная поверка производится при выпуске вновь произведенных дозиметров и после их ремонта.

Периодическая поверка производится при эксплуатации дозиметров.
Межповерочный интервал составляет один год.

4.2 Операщии и средства поверки

При проведении поверки должны выполняться операции и применяться средства. указанные в таблице 4.1.
Таблица 4.1 -Перечень операций и средств, применяемых при проведении поверки

Наименование операции	Номер пункта	Средства поверки и их нормативно-технические характеристики	Обязательность проведения операций при	
			первичной поверке	периодической поверке
1. Внешний осмотр	4.6.1	Визуально	Да	Да
2. Опробование	4.6 .2		Да	Да
3. Определение основной относительной погрешности измерения произведения поплощённой дозы на площадв	4.6 .3	Рабочий эталон поглощенной дозы фотонного изпучения в воздухе I разряда типа PTW NOMEX с ионизационной камерой по ГОСТ 8.70-96. Рабочий эталон на основе ДРК-1, предел основной относительной погрешности измерения произведения дозы - на площадь $\pm 10 \%$. Рентгеновский аппарат с напряжением на трубке 100 kB . Bепомогательные средства: - барометр по ГОСТ 23696-79, - термометр по ГОСТ 27544 -87.	Да	Да
4. Оформление результатов поверки	4.7		Да	Да
Примечание - Допускается применять отдельные. вновь разработанные или находящиеся в, примененин средства поверки и оборудование, по своим характеристикам не уступающие указанным в настоящей методике поверки.				

4.3 Требования к квалификации поверителей

4.3.1 К поверке допускаются специалисты, прошедшие обучение и аттестованные в

соответствии с правилами по метрологии ПР $50.2 .012-94$ в качестве поверителей средств нзмерений ионизирующих излучений.
4.3.2 Поверители должны иметь допуск к работе с источниками излучения в соответствии с п. 3.4.14 «Основных санитарных правил обеспечения радиаиионной безопасности (ОСПОРБ-99). СП 2.6.1.799-99».

4.4 Требования безопасности

4.4.1 При поверке поверители должны руководствоваться требованиями:

- СП 2.6.1.799-99 «Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99)»;
- СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)»;
- РД 153-34.0-03.150-00 «Межотраслевые правила по охране труда (Правила безопасности) при эксплуатации электроустановок (ПОТ Р М-016-2001)».
- инструкций по технике безопасности при работе на ренттеновских установках.
4.4.2 Поверители должны:
- изучить требования по технике безопасности;
- знать инструкции (руководства по эксплуатации) по работе с применяемыми средствами поверки.
4.4.3 Поверочные работы на рентгеновском аппарате относятся к особо вредным условиям труда.

4.5 Условия поверки

Поверка должна быть проведена при соблюдении следующих условий:

- температура окружающей среды ... $20 \pm)^{\circ} \mathrm{C}$,
- относительная влажность воздуха ... от 30 до 80%,
- атмосферное давление . от 84 до 106,7 кПа,
- естественный радиационный фон не более 0,2 мк $3 \mathrm{~b} \cdot ч^{-1}$.

4.6 Проведение поверки

4.6.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

- соответствие комплектности дозиметра;
- наличие эксплуатационной документации;
- отсутствие на приборе (измерительном пульте и ионизационной камере дозиметра) загрязнений, механических повреждений, влияюцих на их работу.
4.6.2 Опробование

Опробование дозиметра сводится к проведению операций по 2.3 .
4.6.3 Определение основной относительной погреиности измерения произведения поглоченной дозы на площадь
4.6.3.1 Поверка дозиметра осуществляется либо с демонтажем, либо без демонтажа. Поверка осуществляется при анодном напряжении 100 kB . Определение основной относительной погрешности измерений проводится ири четырех значениях произведения поглощенной дозы на пношадь: первая поверяемая точка - от 25 до 30 сГрсм 2, вторая - от 280 до $320 \mathrm{c} \mathrm{\Gamma р} \cdot \mathrm{~cm}^{2}$, третья - от 3000 до $3500 \mathrm{c} \mathrm{\Gamma р} \cdot \mathrm{~cm}^{2}$ и четвертая - от 10000 до $12000 \mathrm{c} \mathrm{\Gamma p} \cdot \mathrm{~cm}^{2}$.
4.6.3.2 При поверке с демонтажем ионизаиионная камера поверяемого дозиметра помещается в центре поля излученй рентгеновского аппарата так, чтобы ее плоскость была

перпендикулярна осн пучка, а поле излучения пересекало всю ионизационную камеру. Неравномерность поля изпучения в пределах поиыади ионизаиионной камеры должна быть в пределах $\pm 5 \%$.

Значение потпщенной дозы в воздухе определяется с помоцью рабочего эталона I разряда по ГОСТ $8.70-96$ типа PTW NOMEX, ионизационная камера которого помешается рядом с поверяемой ионизационной камерой.

Дпя перевода единиц измерения рабочего этанона типа PTW NOMEX, поверяемая нонизационная камера должна быть закрьта от излучения металлическим экраном с окном известной площади. При этом измеренная рабочим эталоном доза, умноженная на площадь окна, считается расчетньм значением показаний поверяемого дозиметра.
4.6.3.3 Іри поверке без демонтажа в качестве рабочего эталона I разряда используется рабочий эталон на основе дозиметра ренттеновского излучения клинического ДРК•1. Ионизационные камерь поверяемого и эталонного дозиметра должны располагаться в таком положении н на таком расстоянии от выходного окна рентгеновского излучателя, чтобы их ппоскости были перпендикуляны оси пучка, а максимальное сечение пучка изпучения псрекрьвало рабочую поверхность поверяемой камерыв пределах от 50 до 95% и не выходидо за предепы рабочей поверхиости эталонной камеры в соответствии с рисунком 4.1.

Рис. 4.1 - Схема расположения камер при поверке

На рисунке 4.2 приведен обиий вид камеры рабочего эталона ДРК-1, а на рисунке 4.3 схема установки камеры рабочего эталона.
4.6.3.4 Провести облучение обоих камер до того момента, когда расчетное значение произведения дозь на плоцадв по показаниям рабочего эталона типа РTW NOMEX (при поверке с демонтажем) ими показания эталонного дозиметра ДРК-1 (при поверке без демонтажа) будут в диапазоне ($25-30$) сГрсм ${ }^{2}$ (первая поверяемая точка).
4.6.3.5 Снять показания поверяемого N^{i}, и эталонного N_{2} дозиметра (расчетное значение произведения дозы на плоцадь или показания эталоннопо ДРК-1), где i - порядковый номер поверяемой точки, $i=1 \div 4 ; j$ рядковый номер наблюдения в данной точке, $j=1,2,3$.

Рисунок 4.2 -Общий вид камеры рабочего этанона с кронитейном

Рисунок 4.3 - Схема установки камеры рабочего эталона
4.6.3.6 Рассчитать относительную погрешность поверяемого дозиметра по результату первого наблюдения δ_{1}^{\prime} в процентах по формуле

$$
\begin{equation*}
\delta_{1}^{\prime}=\frac{N_{1}^{\prime}-K \cdot N_{2}^{\prime}}{K \cdot N_{s}^{\prime}} \cdot 100 \tag{4.1}
\end{equation*}
$$

где N_{1}^{\prime} - показания поверяемого дозиметра, сГр.см ${ }^{2}$;
N_{s}^{1} - показания эталонного дозиметра, сГр.см ${ }^{2}$;
K - коэффициент, учитывающий ослабление излучения поверяемой камерой и обратное рассеяние рентгеновского излучения от эталонной камеры при поверке без демонтажа, $K=1,08$. При поверке с демонтажем $K=1$.
4.6.3.7 Повторить операции по 4.6.3.4; 4.6.3.5 ещё два раза и рассчитать относительные погрешности по результатам второго и третьего наблюдений в первой поверяемой точке $\delta_{2}^{\prime}, \delta_{3}^{1}$.
4.6.3.8 Рассчитать среднее значение относительной погрешности поверяемого дозиметра в первой точке по формуле

$$
\begin{equation*}
\bar{\delta}^{\prime}=\frac{\delta_{1}^{1}+\delta_{2}^{1}+\delta_{3}^{\prime}}{3} \tag{4.2}
\end{equation*}
$$

4.6.3.9 Повторить операции по $4.6 .3 .4 \div 4.6 .3 .8$ для остальных трех точек и рассчитать соответствующие погрешности $\bar{\delta}^{2}, \bar{\delta}^{3}, \bar{\delta}^{4}$.
4.6.3.10 Результаты поверки считают положительными, если относительные погрешности измерения произведения дозы на площадь в каждой поверяемой точке $\bar{\delta}, \bar{\delta}^{2}, \bar{\delta}^{3}, \bar{\delta}^{4}$ не превышают значения, приведенного в 1.2.3. Если в каких-то точках погрешность превынает требуемуғо, необходимо изменить соответствуюциие калибровочные коэффициенты. Порядок изменения калибровочных коэффициентов приведен ниже в 4.8 .

Если введением новых коэффициснтов невозможно получить требуемые погрешности, дозиметр подлежит ремонту.

4.7 Оформление результатов поверки

4.7.1 Положитепьные результаты поверки дозиметра оформляются в соответствии с IIP 50.2.006-94.
4.7.2 Мри отрицатепьньх резупьтатах поверки выдается извещение о непригодности дозиметра или делается соответствуюцая запись в технической документаций и применение его не допускается.

4.8 Порядок корректировки калибровочных коэффишиентов

4.8.1 В память дозиметра при первичной поверке заносятся три коэффиииента: 1103 -корректирует показания в третьей поверяемой точке, П04-корректирует показания в четвертой поверяемой точке; П105-корректирует показания одновременно во всех поверяемых точках.
4.8.2 Корректировка показаний в первой и второй поверяемых точках возможна только с помощвю коэффициента П05. Поэтому, если погрешность превыиает требуемуғо в первой и/кли второй поверяемой точке, необходимо соответствуюшим образом изменить кодффициент П05 (показания дозиметра изменяются пропориионально изменению коэффициента). При этом необходимо учитьвать, что пропоринонально изменятся показания во всех поверяемых точках и необходимо пересчитать погрешности $\bar{\delta}^{1}, \widetilde{\delta}^{2}, \widetilde{\delta}^{3}, \widetilde{\delta}^{4}$ с учетом изменившихся показаний. Если необходимо, то в третьей и четвертой поверяемых точках показания можно изменить с помощью коэффициентов $П 03$ и $П 04$.
4.8.3 Порядок входа в режим корректировки следующий. Удерживая кнопку «ПЕЧАТЬ» подать питание. На индикаторе появится «8.8.8.8.8.8.8.8.». Отпустить кнопку «ПЕЧАТЬ» и последовательно нажать кнопку «ТЕСТ» (на индикаторе сохраняется «8.8.8.8.8.8.8.8.»), «ТАМЯТВ» (на индикаторе сохраняется «8.8.8.8.8.8.8.8.»), «СБРОС» (на индикаторе《.......--<) и «РАБОТА» (на индикагоре появится «П01.»).

При ошибке в указанной последовательности ппата блокируется и дпя выхода из состояния бпокировки необходимо выкпючить питание и повторить операции этого пункта сначала.
4.8.4 Нажйая требуемое копичество раз кнопку «РАБОТА» установитв на индикаторе требуемый коэффициент П03, П04 илй П05. Подтверждением того, что плата находится в режиме корректировкн является светяцаяся точка после номера коэффициента. Кнопками «ВВЕРХ》 или «ВНИЗ» скорректировать значение коэффициента. После установки требуемого значения дпя его запоминания нажать кнопку «РАБОТА». Светящаяся точка погаснет. При следующем нажатии кнопки «РАБОТА» появится следующий коэффициент и его значение.

ВНИМАНИЕ: ЗАПРЕЩАЕТСЯ КОРРЕКТИРОВКА ДРУТИХ КОЭФФИЦИЕНТОВ. ДОСТУПНЫХХ В ЭТОМ РЕЖИМЕ, КРОМЕ П03, П04 ИП05.
4.8 .5 Для выхода из режима корректировки вынпочить питание дозиметра.

ВНИMAHME! HE ЗАВЫВАЙТЕ ЗАПОМИНАТЬ НОВЫЕ ЗНАЧЕНИЯ КОЭФФИLИЕНТОВ НАЖАТИЕМ КНОПКИ «РАБОТА», КАК ОПИСАНО B ПРЕДЬLДУLLEM ПУНKTE. ЕСПИ ЗАПОМИНАНИЕ НЕ ВЫПОПНЕНО, ТО ПРИ СЈЕДУЮЩЕМ ВКЛЮЧЕНИИ ДОЗИМЕТРА ШЗМЕРЕНИЯ БУДУТ ВЫПОЛНЯТЬСЯ СО СТАРЫМИ КОЭФФИLИЕНТАМИ.

5 TEKY पИЙ PEMOHT

5.1 Текуций ремонт дозиметра заключается в восстановлении поврежденных кабелей и развемов. Узлы дозиметра неремонтопритодны и в случае ввхода из строя подлежат замене или ремонту на предприятии-изготовителе.

