СОГЛАСОВАНО

Директор УП «Атомтех»

В.А. Кожемякин

2005 г.

УТВЕРЖДАЮ

Директор БелГИМ

Н.А.Жагора

2005 r.

Дозиметры индивидуальные ДКС-АТ3509 Методика поверки ТИАЯ.412118.010 МП

> МП. МН 742-2005 (Взамен МП.МН 742-99)

146. N. 8380

Содержание

1	Нормативные ссылки	3
2	Операции поверки	4
3	Средства поверки	5
4	Требования к квалификации поверителей	5
5	Требования безопасности	6
6	Условия поверки и подготовка к ней	6
7	Проведение поверки	6
8	Оформление результатов поверки	11
Пр	иложение А	12
Би	блиография	14

Numepa O1

Настоящая методика поверки распространяется на дозиметры индивидуальные ДКС-АТ3509, ДКС-АТ3509A, ДКС-АТ3509B, ДКС-АТ3509C (далее – дозиметры) и устанавливает методы и средства их первичной и периодической поверок.

Настоящая методика поверки разработана в соответствии с ТКП 8.003, СТБ 8065.

Первичной поверке подлежат дозиметры, выпускаемые из производства.

Периодической поверке подлежат дозиметры, находящиеся в эксплуатации или на хранении, через межповерочные интервалы.

Межповерочный интервал – 12 мес.

Внеочередной поверке до окончания срока действия периодической поверки подлежат дозиметры после ремонта, влияющего на метрологические характеристики. Внеочередная поверка дозиметров после ремонта проводится в объеме, установленном в методике поверки для первичной поверки.

Поверка дозиметров должна осуществляться юридическими лицами государственной метрологической службы или аккредитованными поверочными лабораториями других юридических лиц.

1 Нормативные ссылки

В настоящей методике поверки использованы ссылки на следующие технические нормативные правовые акты в области технического нормирования и стандартизации (далее – ТНПА):

ТКП 8.003-2011 (03220) Система обеспечения единства измерений Республики Беларусь. Поверка средств измерений. Правила проведения работ

ТКП 181-2009 (02230) Правила технической эксплуатации электроустановок потребителей

СТБ 8065-2016 Система обеспечения единства измерений Республики Беларусь. Дозиметры и измерители мощности дозы фотонного излучения. Методика поверки

СТБ ISO 4037-3-2014 Эталонные рентгеновские и гамма-излучения для калибровки дозиметров и измерителей мощности дозы и определения их отклика как функции энергии фотона. Часть 3. Калибровка дозиметров окружающей среды и индивидуальных дозиметров и измерение их отклика в зависимости от энергии и угла падения излучения

ГОСТ 8.087-2000 Государственная система обеспечения единства измерений. Установки дозиметрические рентгеновского и гамма-излучений эталонные. Методика поверки по мощности экспозиционной дозы и мощности кермы в воздухе

ГОСТ 12.2.007.0-75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности

ГОСТ IEC 61010-1-2014 Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования

Примечание — При использовании настоящей методики поверки целесообразно проверить действие ТНПА по Перечню технических нормативных правовых актов, действующих на территории Республики Беларусь, и каталогу, составленным по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году.

Если ссылочные ТНПА заменены (изменены), то при использовании настоящей методики поверки следует руководствоваться замененными (измененными) ТНПА. Если ссылочные ТНПА отменены без замены, то положение, в котором дана ссылка на них, применяется в части, не затрагивающей эту ссылку.

2 Операции поверки

2.1 При проведении поверки должны быть выполнены операции, указанные в таблице 2.1.

Таблица 2.1

Наименование	Номер пункта	Проведение	операции при
операции	методики поверки	первичной поверке	периодичес- кой поверке
1 Внешний осмотр	7.1	Да	Да
2 Опробование	7.2	Да	Да
3 Определение метрологических характеристик: 3.1 Определение основной относительной погрешности при измерении индивидуального эквивалента дозы $H_p(10)$, мощности индивидуального эквивалента дозы $\dot{H}_p(10)$ и индивидуального эквивалента дозы $H_p(0,07)^*$, мощности индивидуального эквивалента дозы $\dot{H}_p(0,07)^*$	7.3.2, 7.3.3	Да	Да
4 Оформление результатов поверки	8	Да	Да

^{*}Только для дозиметров ДКС-АТ3509В, ДКС-АТ3509С.

Примечание — Если при проведении той или иной операции поверки получают отрицательный результат, дальнейшую поверку прекращают.

При проведении поверки в Российской Федерации в случае использования дозиметра для измерения отдельных величин и (или) в ограниченных диапазонах (на меньшем числе поддиапазонов) измеряемых величин на основании письменного заявления владельца дозиметра допускается проведение поверки только для этих величин и (или) в этих ограниченных диапазонах (на меньшем числе поддиапазонов) в соответствии с [1]. При этом в свидетельстве о поверке должны быть указаны величины и диапазоны, для которых проводилась поверка.

3 Средства поверки

3.1 При проведении поверки должны применяться средства поверки, указанные в таблице 3.1.

Таблица 3.1

таолица	3.1	
Номер пункта методики поверки	Наименование и тип эталонов и вспомогательных средств поверки, обозначение ТНПА	Метрологические и основные технические характеристики
7.3.1, 7.3.2, 7.3.3	Эталонная дозиметрическая установка гамма-излучения по ГОСТ 8.087 с набором источников ¹³⁷ Сs и ²⁴¹ Am	Диапазон измерений мощности кермы в воздухе от 4,6·10 ⁻⁷ до 3,4 Гр/ч. Погрешность не более ±5 %
7.3.2, 7.3.3	Секундомер	Цена деления не более 0,2 с, погрешность за 30 мин - не более ±1,0 с
6.1	Термометр	Цена деления 1 °C. Диапазон измерений от 10 °C до 40 °C Погрешность не более ±1 °C
6.1	Барометр	Цена деления 1кПа. Диапазон измерений от 80 до 106 кПа. Погрешность не более ±0,2 кПа
6.1	Измеритель влажности	Диапазон измерений относительной влажности воздуха от 20 % до 90 %. Погрешность не более ±5 %
6.1	Дозиметр гамма-излучения	Диапазон измерений мощности дозы гамма- излучения от 0,1 до 10 мкЗв/ч. Основная относительная погрешность ±20 %
7.3	Водный фантом размерами 300×300×150 мм	Характеристики в соответствии с СТБ ISO 4037-3
University		

Примечания

4 Требования к квалификации поверителей

4.1 К проведению измерений при поверке и (или) обработке результатов измерений допускают лиц, которые подтвердили компетентность выполнения данного вида поверочных работ.

¹ Все средства поверки должны иметь действующие клейма и (или) свидетельства о проведении поверки. Допускается применять другие средства поверки, обеспечивающие метрологические характеристики с требуемой точностью.

² Переход к единицам индивидуального эквивалента дозы $H_p(10)$ и $H_p(0,07)$ (3в) от единиц кермы в воздухе (Гр) осуществляют, используя коэффициенты преобразования, рекомендованные СТБ ISO 4037-3, при этом коэффициент преобразования $H_p(10)$ для гамма-излучения радионуклида ¹³⁷Сѕ принимают равным 1,21 3в/Гр, коэффициент преобразования $H_p(0,07)$ для гамма-излучения радионуклида ²⁴¹Аm – 1,72 3в/Гр.

5 Требования безопасности

- 5.1 При проведении поверки необходимо соблюдать требования [2], [3] и [4], а также:
- требования безопасности, установленные ГОСТ IEC 61010-1 для оборудования класса защиты III по ГОСТ 12.2.007.0;
- правила техники эксплуатации электроустановок потребителей в соответствии с ТКП 181;
- инструкции по технике безопасности и по радиационной безопасности, утвержденные руководителем организации;
- требования безопасности, изложенные в эксплуатационной документации на применяемые средства измерений и оборудование.
 - 5.2 Процесс поверки должен быть отнесен к работам во вредных условиях труда.

6 Условия поверки и подготовка к ней

6.1 Поверку необходимо проводить в следующих условиях:

температура окружающего воздуха

от 15 °C до 25 °C;

относительная влажность воздуха

от 30 % до 80 %;

- атмосферное давление

от 84 до 106 кПа;

- фон гамма-излучения

не более 0,20 мкЗв/ч.

- **6.2** В помещении, где проводится поверка, не должно быть посторонних источников ионизирующих излучений.
- 6.3 Подготовка к поверке эталонных и вспомогательных средств поверки осуществляется в соответствии с их эксплуатационной документацией.
 - 6.4 При подготовке дозиметров к поверке необходимо:
 - ознакомиться с [5];
 - подготовить дозиметры к работе в соответствии с разделом 2 [5].
- для дозиметров, которые эксплуатируются в системе дозиметрического контроля, разрешить сброс накопленной дозы в соответствии с [6] (6.2.4).

7 Проведение поверки

7.1 Внешний осмотр

- 7.1.1 При проведении внешнего осмотра проверяют:
- а) соответствие комплектности поверяемого дозиметра требованиям раздела 1 [5] (1.3) в объеме, необходимом для поверки;
 - б) наличие свидетельства о предыдущей поверке (при периодической поверке);
- в) отсутствие на дозиметре загрязнений, механических повреждений, влияющих на их работоспособность.

7.2 Опробование

- 7.2.1 При проведении опробования проводят следующие операции:
- проверку выполнения самоконтроля. При этом должны быть установлены новые элементы питания;
 - подтверждение соответствия программного обеспечения (далее ПО) дозиметра.

7.2.2 При опробовании дозиметра проводят проверку самоконтроля. Для этого включают дозиметр нажатием кнопки « ». После включения дозиметр перейдет в режим самоконтроля основных узлов. На индикаторе на 3-5 с появится изображение всех сегментов. При этом будут гореть подсветка индикатора и сигнальный светодиод в торце корпуса дозиметра и раздаваться короткие звуковые сигналы.

В случае успешного проведения самоконтроля через 3-5 с дозиметр будет индицировать значение накопленной дозы.

В случае обнаружения неисправностей и нарушения работоспособности на индикаторе появится сообщение об ошибке.

Результаты опробования дозиметра считают удовлетворительными, если дозиметр после прохождения самоконтроля перешел в режим индикации дозы.

7.2.3 Подтверждение соответствия ПО дозиметра проводят проверкой защиты ПО от несанкционированного доступа во избежание искажения результатов измерений.

Проверка соответствия встроенного ПО осуществляется проверкой отсутствия сообщений об ошибках тестов самоконтроля и целостности пломбы на дозиметре.

7.3 Определение метрологических характеристик

7.3.1 Определение основной относительной погрешности при измерении индивидуального эквивалента дозы (далее – доза) $H_p(10)$, $H_p(0,07)$ и мощности индивидуального эквивалента дозы (далее – мощность дозы) $\dot{H}_p(10)$, $\dot{H}_p(0,07)$ непрерывного рентгеновского и гамма-излучения проводят на эталонной дозиметрической установке с источниками гамма-излучения с радионуклидами ¹³⁷Cs и ²⁴¹Am, подвергая воздействию излучения дозиметр на водном фантоме.

Примечания

- 1 Допускается использовать фантом размерами $300\times300\times150$ мм из материала на основе полиметилметакрилата (PMMA) при измерениях с источником гамма-излучения с радионуклидом ¹³⁷Cs.
- 2 Допускается не использовать фантом при определении основной относительной погрешности при измерении дозы и мощности дозы. В этом случае при расчетах основной относительной погрешности по формулам (1), (2), (8), (9) измеренные значения дозы H и мощности дозы \dot{H} должны быть умножены на соответствующий коэффициент обратного рассеяния от фантома. Коэффициент обратного рассеяния должен быть определен для дозиметров на данной эталонной дозиметрической установке отдельно для источников гамма-излучения с радионуклидами 137Cs и 241Am. Коэффициент обратного рассеяния определяют как отношение показаний дозиметра, установленного на фантоме, к дозиметра без фантома показаниям ДЛЯ контрольных точек, указанных в таблицах 7.1 и 7.2.

Действительные значения мощности дозы $\dot{H}_p(10)$, $\dot{H}_p(0,07)$ или дозы $H_p(10)$, $H_p(0,07)$ в контрольных точках должны быть определены для реперной точки дозиметра – центра чувствительного объема детектора, обозначенного метками на корпусе дозиметра.

При использовании фантома поверяемый дозиметр размещают передней панелью вплотную к передней стенке фантома, которая должна быть обращена к источнику излучения. При этом нормаль, проведенная из геометрического центра передней стенки фантома, должна совпадать с центральной осью излучения и проходить через реперную точку дозиметра.

При определении основной относительной погрешности дозиметра без применения фантома поверяемый дозиметр должен размещаться тыльной стороной корпуса дозиметра к

источнику излучения. При этом центральная ось излучения должна проходить через реперную точку дозиметра.

Размер поля излучения должен быть достаточным для полного перекрытия передней стенки фантома (поверка с применением фантома) или дозиметра (в случае поверки без использования фантома) и варьируется расстоянием «источник-детектор» или диаметром выходного окна коллиматора эталонной дозиметрической установки. При этом расстояние «источник-детектор» должно составлять не менее 1 м.

- 7.3.2 Определение основной относительной погрешности при измерении дозы $H_p(10)$, $H_p(0,07)$ проводят в следующей последовательности:
- а) включают дозиметр и переводят его в режим измерения дозы $H_p(10)$. Обнуляют накопленную дозу $H_p(10)$. Для этого нажимают и удерживают кнопку « \mathbb{O} » дозиметра более 3 с. После появления на индикаторе сообщения «OFF» отпускают кнопку и кратковременными нажатиями (длительностью не более 1 с) перебирают сообщения дозиметра до появления «Cld». Нажимают и удерживают кнопку дозиметра более 3 с. Происходит сброс накопленной дозы, при этом индицируется нулевое значение дозы.

Примечание – Сброс накопленной дозы дозиметра может быть запрещен в системе дозиметрического контроля. В этом случае сообщение «Cld» не будет появляться на индикаторе дозиметра. Следует разрешить сброс накопленной дозы в соответствии с [6] (6.2.4);

б) устанавливают дозиметр на эталонной дозиметрической установке в контрольную точку 1 в соответствии с 7.3.1 и подвергают воздействию гамма-излучения радионуклида 137 Cs с мощностью дозы, соответствующей значению $\dot{H}_p(10)$ в контрольной точке 1, указанному в таблице 7.1.

Таблина 7.1

Номер контрольной точки	Доза в контрольной точке $H_p(10)$ $(H_p(0,07))$	Время облучения T_u	Мощности дозы в контрольной точке $\dot{H}_p(10)$ $(\dot{H}_p(0,07))$	Пределы допускаемой основной относительной погрешности, Δ
1	4 мЗв	180 c	80 мЗв/ч	±15 %
2	4 мкЗв	360 c	40 мкЗв/ч	±15 %

- в) включают секундомер и одновременно фиксируют начальное показание дозиметра H_1 ;
- Γ) фиксируют конечное показание дозиметра H_2 по истечении времени облучения T_u , указанного в таблице 7.1, и выключают секундомер;
- д) определяют для контрольной точки 1 измеренное значение дозы $H=H_2-H_1$. Записывают измеренное значение дозы H в протокол поверки, форма которого приведена в приложении A;
- е) определяют основную относительную погрешность при измерении дозы, θ_d , %, по формуле

$$\theta_d = \frac{H - H_p(10)}{H_v(10)} \cdot 100,\tag{1}$$

где $H_p(10) = \dot{H}_p(10) \cdot T_u;$

ж) переводят дозиметр в режим измерения дозы $H_p(0,07)$. Обнуляют накопленную дозу $H_p(0,07)$ по 7.3.2 (a);

- и) подвергают дозиметр воздействию гамма-излучения радионуклида 241 Am с мощностью дозы, соответствующей значению $\dot{H}_{p}(0.07)$ в контрольной точке 2, указанному в таблице 7.1;
 - к) повторяют операции по 7.3.2 (в, г);
 - л) определяют для контрольной точки 2 измеренное значение дозы $H=H_2-H_1$
- м) определяют основную относительную погрешность при измерении дозы θ_d , %, по формуле

$$\theta_d = \frac{H - H_p(0,07)}{H_p(0,07)} \cdot 100, \tag{2}$$

где $H_p(0,07) = \dot{H}_p(0,07) \cdot T_u;$

н) проверяют для всех контрольных точек выполнение неравенства

$$1,1 \cdot \sqrt{\theta_d^2 + \theta_o^2} \le |\Delta|,\tag{3}$$

где θ_d – основная относительная погрешность при измерении дозы в контрольной точке, определенная по формулам (1), (2), %;

 θ_0 – погрешность эталонной дозиметрической установки (из свидетельства о поверке на установку), %;

 Δ – пределы допускаемой основной относительной погрешности при измерении дозы, указанные в таблице 7.1, %.

Результаты поверки считают удовлетворительными, если при всех значениях θ_d выполняется неравенство (3).

- 7.3.3 Основную относительную погрешность измерения мощности дозы $\dot{H}_p(10)$ и $\dot{H}_p(0,07)$ определяют в следующей последовательности:
- а) включают дозиметр и переводят его в режим измерения мощности дозы $\dot{H}_p(10)$ или $\dot{H}_p(0.07)$ кратковременным нажатием кнопки « $\dot{\mathbb{O}}$ »;
- б) устанавливают дозиметр на эталонной дозиметрической установке в контрольной точке в соответствии с 7.3.1 и подвергают воздействию гамма-излучения радионуклида 137 Cs с мощностью дозы, соответствующей значениям $\dot{H}_p(10)$ в контрольных точках 1-4, указанным в таблице 7.2 (точка 4 только для дозиметра ДКС-АТ3509C), и воздействию гамма-излучения радионуклида 241 Am с мощностью дозы, соответствующей значению $\dot{H}_p(0,07)$ в контрольной точке 5 (для дозиметров ДКС-АТ3509B, ДКС-АТ3509C), указанному в таблице 7.2.

Таблица 7.2

Номер контрольной точки	Мощность дозы в контрольной точке $\dot{H}_p(10)$ $(\dot{H}_p(0,07))$	Время выдержки <i>T₆</i> , с, не менее	Время между измерениями T_u , с, не менее	Коли- чество измере- ний, <i>n</i>	Пределы допускаемой основной относительной погрешности Δ , %
1	0,8 мкЗв/ч	240	240	5	±30
2	4,0 мЗв/ч	30	15	5	±15
3	800,0 мЗв/ч	3	3	5	±15
4	4,0 Зв/ч	15	3	5	±19
5	20,0 мкЗв/ч	240	60	5	±15

Примечание – При поверке в контрольной точке 1 учитывают фоновые (без источника излучения) показания дозиметра. Допускается использовать среднее значение фона, измеренное не менее чем на трех дозиметрах ДКС-АТ3509.

- в) проводят измерение мощности дозы в соответствии с таблицей 7.2. Для этого выдерживают дозиметр в течение времени T_6 , после чего считывают последовательно через интервалы времени T_u n результатов измерений мощности дозы;
- г) определяют средние арифметические значения показаний дозиметра $\bar{H}(10)$ и $\bar{H}(0,07)$ в контрольных точках по формулам (4), (5) и относительное среднее квадратическое отклонение S показаний дозиметра, %, по формулам (6), (7) соответственно

$$\overline{\dot{H}}(10) = \frac{\sum_{i=1}^{5} \dot{H}_i(10)}{5},\tag{4}$$

$$\overline{H}(0,07) = \frac{\sum_{i=1}^{5} H_i(0,07)}{5},$$
 (5)

$$S = \frac{1}{\bar{H}(10)} \cdot \sqrt{\frac{\sum_{i=1}^{5} (\dot{H}_{i} (10) - \bar{H}(10))^{2}}{20}} \cdot 100, \tag{6}$$

$$S = \frac{1}{\bar{H}(0,07)} \cdot \sqrt{\frac{\sum_{i=1}^{5} (\dot{H}_{i}(0,07) - \bar{H}(0,07))^{2}}{20}} \cdot 100, \tag{7}$$

д) определяют основную относительную погрешность при измерении мощности дозы θ_d , %, по формулам

$$\theta_d = \frac{\dot{H}(10) - \dot{H}_p(10)}{\dot{H}_p(10)} \cdot 100, \tag{8}$$

$$\theta_d = \frac{\dot{H}(0,07) - \dot{H}_p(0,07)}{\dot{H}_p(0,07)} \cdot 100, \tag{9}$$

где $\dot{H}_p(10)$, $\dot{H}_p(0,07)$ – действительное значение мощности дозы в контрольной точке, указанное в таблице 7.2;

e) оценивают суммарное среднее квадратическое отклонение $S_{\mathcal{E}}$ показаний дозиметра по формуле

$$S_{\Sigma} = \sqrt{S^2 + \frac{\theta_0^2}{3} + \frac{\theta_d^2}{3}},\tag{10}$$

где θ_0 – погрешность эталонной дозиметрической установки (из свидетельства о поверке на установку);

ж) вычисляют доверительные границы основной относительной погрешности дозиметра δ по формуле

$$\delta = K \cdot S_{r},\tag{11}$$

где K – коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей, принят равным 2;

и) повторяют операции по 7.3.3 (а-ж) для каждой контрольной точки в соответствии с таблицей 7.2.

Результаты поверки считают удовлетворительными, если значения доверительных границ основной относительной погрешности δ , определенных для контрольных точек 1-5, не превышают пределов допускаемой основной относительной погрешности Δ , указанных в таблице 7.2.

8 Оформление результатов поверки

- **8.1** Результаты поверки оформляют протоколом по форме, приведенной в приложении A.
 - 8.2 Положительные результаты поверки оформляют:
 - а) при выпуске дозиметров из производства:
- записью в разделе «Свидетельство о приемке» [5], заверенной подписью и оттиском поверительного клейма;
 - нанесением клейма-наклейки поверителя на переднюю панель корпуса дозиметра;
- б) при эксплуатации и выпуске дозиметров после ремонта нанесением клейма-наклейки и выдачей свидетельства о поверке по форме, установленной ТКП 8.003 (приложение Г).
- **8.3** При отрицательных результатах поверки эксплуатация дозиметров запрещается и выдается заключение о непригодности по форме, установленной ТКП 8.003 (приложение Д). При этом поверительное клеймо подлежит гашению и свидетельство о поверке аннулируется.

От УП «АТОМТЕХ»

Главный метролог – начальник отдела
радиационной метрологии УП «ATOMTEX

<u>Б</u>угот В.Д. Гузов « 12 » ОЗ 2019 г.

Начальник лаборатории индивидуальных дозиметров и микроузлов детектирования УП «ATOMTEX»

<u>fusf</u> Ю.Ф. Курдя «<u>12</u>» 03 2019 г.

Приложение А

(рекомендуемое)

Форма протокола поверки Наименование организации, проводящей поверку

проток	сол №		
поверки <u>Дозиметра индивидуальн</u> наименование средс			зав.№
принадлежащего			
		е организации	
Изготовитель	УП «А'	TOMTEX»	
Дата проведения поверки			
	год	, месяц, число	
Поверка проводилась по			
	докум	ент, по которому п	роводилась поверка
Условия поверки:			
- температура окружающего возду	yxa	°C;	
- относительная влажность воздух	(a	%;	
– атмосферное давление		кПа	,
– фон гамма-излучения		мкЗі	в/ч.
Средства поверки:			
Результаты поверки:			
1 Внешний осмотр			
– документация			
- комплектность			
- отсутствие механических повреж	кдений		
2 Опробование:			
- самоконтроль			
- соответствие ПО			

3 Определение метрологических характеристик:

3.1 Определение основной относительной погрещности при измерении дозы

Номер контроль- ной точки	Доза $H_p(10)$ $(H_p(0,07))$	Мощность дозы $\dot{H}_p(10)$ $(\dot{H}_p(0,07))$	Измеренная доза <i>H=H₂-H₁</i>	Основная относительная погрешность при измерении дозы θ_d , %	Выполнение неравенства $1,1\sqrt{\theta_d^2+\theta_o^2} \le \Delta$
1	4 м3в	80 мЗв/ч			
2	4 мкЗв	40 мкЗв/ч			

3.2 Определение основной относительной погрешности при измерении мощности дозы

Номер контроль- ной точки	Мощность дозы $\dot{H}_p(10)$ $(\dot{H}_p(0,07))$	Измеренная мощность дозы $\dot{H}_i(10)$, $\dot{H}_i(0,07)$	Основная относительная погрешность при измерении мощности дозы	Относительное среднее квадратическое отклонение S, %	Выпол-нение неравенства $\delta \le \Delta$
1	0,8 мкЗв/ч		$\theta_d, \%$		
2	4,0 м3в/ч				
3	800,0 мЗв/ч				
4	4,0 Зв/ч				
5	20,0 мкЗв/ч				

Заключение			
Свидетельство (заключение о непр	№ототот		
Поверитель	лолжность	подпись	расшифровка подписи

Библиография

- [1] Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке Утвержден приказом Минпромторга России от 02 июля 2015 г. №1815
- [2] Гигиенический норматив «Критерии оценки радиационного воздействия» Утвержден постановлением Министерства здравоохранения Республики Беларусь от 28 декабря 2012 г. № 213
- [3] Санитарные нормы и правила «Требования к радиационной безопасности» Утверждены постановлением Министерства здравоохранения Республики Беларусь от 28 декабря 2012 г. № 213
- [4] Санитарные нормы и правила «Требования к обеспечению радиационной безопасности персонала и населения при осуществлении деятельности по использованию атомной энергии и источников ионизирующего излучения» Утверждены постановлением Министерства здравоохранения Республики Беларусь от 31 декабря 2013 г. № 137
- [5] Дозиметры индивидуальные ДКС-АТ3509. Руководство по эксплуатации
- [6] Программа «Dose Manager». Руководство оператора

Лист регистрации изменений

Изм.	Н	омера лист	ов (страни	ц)	Всего	№ до-	Входящий	Подп.	Дата
	изме- ненных	заме- ненных	новых	аннули- рован- ных	листов (стра- ниц) в докум.	ку- мента	№ сопро- водитель- ного доку- мента и дата		
3		2-15		16	15	TUAS. OL 2019		RB	03.04.
								венией й	200

СОГЛАСОВАНО

УТВЕРЖДАЮ

Директор УП «АТОМТЕХ»
В.А.Кожемякин
2019

остандарт» в по стандарт» в по стандарт»

ИМ -__ В.Л.Гуревич _____ 2019

Извещение ТИАЯ.02-2019 об изменении №3 МП.МН 742-2005

РАЗРАБОТЧИК

Главный метролог - начальник отдела радиационной метрологии УП «ATOMTEX» В.Д. Гузов «12 » 03 2019

Начальник лаборатории индивидуальных дозиметров и микроузлов детектирования УП «ATOMTEX»

_______ Ю.Ф. Курдя «________ 2019

УП «АТОМТЕХ»	ИЗВЕЩЕНИЕ	OPO31	ОБОЗНАЧЕНИЕ			
	ТИАЯ.02-2019	МП.М	МП.МН 742-2005			
ДАТА ВЫПУСКА	СРОК ИЗМЕНЕНИЯ		Лист	Листон		
			2	2		
ПРИЧИНА		атам испытаний 5-03/0165-2019	Код	5		
УКАЗАНИЕ О ЗАДЕЛЕ	Задела нет					
УКАЗАНИЕ О ВНЕДРЕНИИ						
ПРИМЕНЯЕМОСТЬ	ТИАЯ.412118.010, ТИАЯ. ТИАЯ.412118.010-06, ТИ	Н.412118.010-01, ТИАЯ.4 НАЯ.468152.003	12118.010-02,			
РАЗОСЛАТЬ	По данным БНТД На 14 листах					
ПРИЛОЖЕНИЕ						

Листы 2-15 заменить. Лист 16 аннулировать.

		1/				THE HILLS IN	
Составил	Жук	THE SHE	12.03 19	Н. контр.	Мананкова	CASP-	12 03.6
Проверил	Курдя	Just	12.03.19	Утвердил	Маевский (Sterry	128,1
Т. контр.				_		и вырыстивно	17.7