КАЛИБРАТОР ТЕМПЕРАТУРЫ

KT-3

Руководство по эксплуатации

EMTK 157.0000.00 PЭ

УТВЕРЖДАЮ раздел 9 «Методика поверки» Руководитель ГЦИ СИ ФГУП «ВНИИФТРИ» _____ Щипунов А.Н. «____»____ 2012 г.

СОДЕРЖАНИЕ

1 НАЗНАЧЕНИЕ	3
2 ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ	3
3 КОМПЛЕКТНОСТЬ	4
4 УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ	5
5 ОБЩИЕ УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ	
6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	6
7 ПОДГОТОВКА К РАБОТЕ	6
8 ПОРЯДОК РАБОТЫ И МЕТОДИКА ИЗМЕРЕНИЙ	
9 МЕТОДИКА ПОВЕРКИ	7
10 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	10
11 ГАРАНТИИ ИЗГОТОВИТЕЛЯ	11
12 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ	11
13 СВИДЕТЕЛЬСТВО ОБ УПАКОВКЕ	11
14. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ	11
15 ЛИСТ УЧЕТА НАРАБОТКИ	12

Данное руководство по эксплуатации (РЭ) предназначено для изучения принципа действия, правил хранения, эксплуатации и технического обслуживания калибратора температуры КТ-3 (далее КТ-3 или калибратор). РЭ содержит сведения, отражающие техническое состояние КТ-3 после изготовления и в процессе эксплуатации, а также сведения, удостоверяющие гарантии изготовителя.

Перед началом работы с КТ-3 необходимо ознакомиться с РЭ.

РЭ должно постоянно находится с КТ-3.

Поверка КТ-3 производится только при наличии РЭ.

При передаче КТ-3 на другое предприятие итоговые суммирующие записи по наработке заверяются печатью предприятия, передающего изделие.

1 НАЗНАЧЕНИЕ

Калибратор температуры КТ-3 (далее калибратор или КТ-3) предназначен для воспроизведения температуры в диапазоне от 300 до $1100\,^{\circ}$ C.

КТ-3 используется в качестве поверочной установки для определения номинальных статических характеристик преобразования различных типов СИ температуры при их производстве, поверке и калибровке.

2 ТЕХНИЧЕСКИЕ ДАННЫЕ И ХАРАКТЕРИСТИКИ

2.1 Диапазон воспроизводимых температур от 300 до 1100 °C.

2.2 Пределы допускаемой основной абсолютной погрешности воспроизведения температуры $\pm (0.2+0.001 \cdot t)$ °C,

где t (здесь и далее) - значение воспроизводимой температуры в °С.

2.3 Нестабильность поддержания температуры за 30 минут

не более ± 0.3 °С.

2.4 Разность воспроизводимых температур в каналах с одинаковыми диаметрами (при их наличии) не более ± 0.1 °C.

2.5 Неоднородность температурного поля в рабочей зоне от 0 до 40 мм по высоте от дна канала не более ± 0.7 °C.

2.6 Индикация измеряемых и задаваемых величин – цифровая. Единица последней декады индикатора 0,1 °C.

2.7 Время выхода КТ-3 на рабочий режим при установке любой температуры рабочего диапазона не более 2.5 ч.

2.8 Скорость охлаждения КТ-3:

в диапазоне 1100-960 °C не менее 7 °С/мин.; в диапазоне 960-750 °C не менее 5 °С/мин.; в диапазоне 750-500 °C не менее 4 °С/мин; в диапазоне 500-300 °C не менее 2,3 °С/мин.

2.9 Условия эксплуатации:

-окружающая температура от 10 до 35 °C; -атмосферное давление от 84 до 106,7 кПа; -относительная влажность от 10 до 80 %:

-напряжение питающей сети - $220\pm22~B$ с нестабильностью не более $\pm4,4~B$, частотой $50\pm1~\Gamma$ ц, коэффициентом высших гармоник не более 5~%;

- -отсутствие магнитных полей и механических вибраций.
- 2.10 Максимальная мощность, потребляемая КТ-3 от сети переменного тока,

¹ Абсолютная погрешность воспроизведения температуры при калибровке термопреобразователей в КТ-3 включает в себя следующие погрешности метода и средств передачи значения температуры:

¹⁾от нестабильности поддержания температуры;

²⁾из-за разности воспроизводимых температур в каналах с одинаковыми диаметрами;

³⁾погрешность измерителя температуры КТ-3;

⁴⁾погрешности из-за неоднородности температурного поля в канале, обусловленные наличием градиента температуры по высоте канала.

не более 2.0 кВт.

- 2.11 По устойчивости к климатическим воздействиям при эксплуатации КТ-3 соответствуют группе исполнения В1 согласно ГОСТ Р 52931-2008.
- 2.12 Устойчивость к механическим воздействиям в рабочих условиях применения соответствует группе исполнения 2 по ГОСТ 22261-94.
- 2.13 Защищенность от воздействия окружающей среды в обыкновенном исполнении по ГОСТ Р 52931-2008. Степень защиты от проникновения воды и пыли КТ-3 соответствует IP30 согласно ГОСТ14254-80.
- 2.14 Электрическая прочность изоляции цепей сетевого питания обеспечивает отсутствии пробоев и перекрытия изоляции при приложении испытательного напряжения 660 В в течение 1 мин.
- 2.15 Электрическое сопротивление изоляции при температурах эксплуатации не менее 20 МОм.
- $2.16~\mathrm{KT}$ -3 в транспортной таре устойчив к воздействию температуры от минус 50 до плюс 50 °C.
- $2.17~\rm KT$ -3 в транспортной таре устойчив к воздействию воздушной среды с относительной влажностью 98% при температуре 35 °C.
- 2.18 KT-3 в транспортной таре устойчив к воздействию ударной тряски с числом ударов в минуту 80, с максимальным значением ускорения 30 м/c^2 и продолжительностью воздействия 1 ч.
 - 2.19 Габаритные размеры КТ-3 не более, мм:

глубина 430; ширина 400; высота 770.

Количество и габаритные размеры каналов для размещения калибруемых термопреобразователей приведены в таблице 1^2 .

Таблица 1

Габаритные разм	Количество		
Глубина	Диаметр отверстий	отверстий	
350±10	7,0±0,2	1	
	9,0±0,2	1	
	11,0±0,2	1	
	$16,0\pm0,2$	1	

- 2.20 Масса не более 20,0 кг.
- 2.21 Среднее время наработки на отказ 10000 ч.
- 2.22 Средний срок службы 5 лет.

3 КОМПЛЕКТНОСТЬ

Комплект поставки КТ-3 соответствует приведенному в таблице 2.

Таблица 2

Ŋo Наименование Обозначение Кол-во Примечание Π/Π 1 Калибратор температуры КТ-3 EMTK 157.0000.00. 1 Калибратор температуры КТ-3. 2 EMTK 157.0000.00 PЭ 1 Руководство по эксплуатации Для калибровки 3 1 Кабель интерфейсный KT-3 4 Кабель сетевой 1 5 Свидетельство о поверке 1

² Количество каналов и их диаметры могут изменяться по заявке потребителя.

4 УСТРОЙСТВО И РАБОТА ИЗДЕЛИЯ

- 4.1 Калибратор температуры КТ-3 представляет собой поверочную установку, состоящую из следующих частей и средств измерений: сухоблочного термостата с высокостабильными термоэлектрическими преобразователями и блока измерения и регулирования температуры.
- 4.2 КТ-3 конструктивно выполнен в одном корпусе, снабженном внутренними разъемами для подсоединения устройств и средств измерения, внутренними соединительными цепями и элементами крепления.

На передней стенке корпуса расположен дисплей блока измерения и регулирования температуры и двухпозиционный переключатель «I-0» для включения и отключения питания КТ-3. На верхней панели корпуса КТ-3 имеются отверстия (каналы) для установки поверяемых (калибруемых) термопреобразователей.

На заднюю стенку корпуса КТ-3 выведены: разъем сетевого питания («220 В»); держатели предохранителей (3 шт. «5 А»); клемма заземления; разъем для подключения к компьютеру RS-232. RS-232 используется для настройки и калибровки КТ-3 при выпуске из производства.

4.3 Сухоблочный термостат состоит из трех металлических цилиндрических блоков: основного, верхнего охранного и нижнего охранного, температура которых регулируется в процессе работы. Блоки окружены пассивным тепловым экраном и теплоизоляцией.

Охранные блоки выполняют функцию регулируемого теплового экрана, уменьшающего градиенты температуры в рабочей зоне основного блока.

В блоках имеются каналы разного диаметра для размещения градуируемых термопреобразователей.

Для определения и поддержания температуры при работе КТ-3 в основном и охранных блоках размещены высокостабильные термоэлектрические преобразователи (ТП) с индивидуальными статическими характеристиками преобразования и нагревательные элементы.

В нижней части термостата установлен вентилятор с целью улучшения процесса регулирования температуры.

- 4.4 Трехканальный блок измерения и регулирования температуры (БИРТ) является микропроцессорным прибором. БИРТ осуществляет измерение и регулирование (по ПИД закону) температуры основного и охранных блоков с использованием для каждого канала регулирования своего ТП и нагревательного элемента. Для обеспечения работы БИРТ используется встроенное программное обеспечение (ПО) «КТ-3. v.2.0», защищенное от чтения и записи. Цифровой идентификатор ПО (контрольная сумма исполняемого кода) 4АС7. Алгоритм вычисления цифрового идентификатора ПО двухбайтовая сумма с переполнением.
- В состав БИРТ входят: 3-х канальный коммутатор; аналого-цифровой преобразователь (АЦП); микропроцессор; три цифроаналоговых преобразователя (ЦАП); три усилителя мощности; двухрядный 5-ти разрядный цифровой индикатор.
- 4.4.1 Сигнал от каждого из трех высокостабильных термоэлектрических преобразователей через коммутатор последовательно попадает на вход АЦП. После преобразования входного сигнала полученную информацию обрабатывает микропроцессор (МП). МП рассчитывает температуры в соответствии с индивидуальными статическими характеристиками преобразования. Исходя из текущих температур, микропроцессор рассчитывает управляющее воздействие (мощность нагрева) и выдает в нагревательные элементы ток необходимой силы. Результат измерения температуры основного блока отображается на дисплее калибратора.
- 4.4.2 Дисплей предназначен для отображения температурных режимов КТ-3, а также задаваемых температур. В его верхней строке отображается текущая температура. В нижней строке отображается заданная температура или время, в течение которого КТ-3 находится в рабочем.
- 4.4.3 На передней панели калибратора расположены кнопки: «Установки», « \leftarrow , \rightarrow », «+, -» для задания требуемой температуры.

Переход в режим задания температуры осуществляется нажатием кнопки «Установки». При этом в нижней строке отображается задаваемое значение температуры с одним мигающим разрядом. Значение температуры может задаваться от 0 до 1100 °C. Редактирование задаваемой температуры осуществляется кнопками « \leftarrow , \rightarrow » и «+, -». Мигающая цифра - редактируемый разряд. Перемещение по разрядам осуществляется с помощью кнопок « \leftarrow , \rightarrow ». Изменение значения разряда производится кнопками «+, -». Для перехода в режим регулирования необходимо нажать на кнопку «Установки».

После задания температуры в верхней строке индикатора высвечивается текущее значение температуры, в нижней - заданное значение температуры. После выхода калибратора на заданную температуру запускается отсчет времени нахождения КТ-3 в рабочем режиме. В нижней строке появляется символ таймера «t» и время нахождения калибратора в рабочем режиме. Формат индуцируемого времени: часы.минуты.

5 ОБЩИЕ УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

- 5.1 К эксплуатации КТ-3 допускается персонал, обученный правилам техники безопасности при работе с калибратором и калибруемыми преобразователями, изучивший эксплуатационную документацию на КТ-3 и калибруемые СИ и прошедший инструктаж по технике безопасности.
- 5.2 Калибратор должен быть надежно заземлен. Сопротивление контура заземления не более 0,1 Ом.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 При работе с КТ-3 должны соблюдаться «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок потребителей», утвержденные Госэнергонадзором.
- 6.2 Перед началом работы проверить качество заземления п.5.2. Не допускается работа с КТ-3 без заземления.
- 6.3 Устранение неисправностей и все профилактические работы проводить только при отключенном от сети приборе и после охлаждения основного блока до комнатной температуры.
- 6.4 При работе с КТ-3 во избежание ожогов запрещается прикасаться к крышке основного блока, имеющей высокую температуру.
- 6.5 Запрещается касаться нагретых частей тестируемых термопреобразователей во время и после измерений во избежание получения ожогов. Также запрещается помещать нагретые термопреобразователи на легковоспламеняющуюся поверхность во избежание возгораний.
- 6.6 Запрещается при проведении работ по калибровке (поверке) устанавливать в каналы КТ-3 термопреобразователи и другие изделия с наличием на нагреваемых частях масла и других горючих веществ во избежание возгораний. Монтажные части термопреобразователей должны быть чистыми.
- 6.7 Запрещается оставлять КТ-3 без присмотра. При возникновении дыма или запаха гари КТ-3 необходимо немедленно отключить от сети.

7 ПОДГОТОВКА К РАБОТЕ

7.1 Распаковать КТ-3 и выдержать его при температуре рабочего помещения не менее 12 часов.

Провести внешний осмотр КТ-3, при котором должны быть проверены: комплектность в соответствии с р.3 настоящего РЭ; отсутствие механических повреждений, влияющих на эксплуатационные характеристики калибратора; соответствие заводского номера на задней стенке калибратора номеру, указанному в р.12 настоящего РЭ.

- 7.2 Установить КТ-3 на чистой, ровной металлической поверхности.
- 7.3 Установить двухпозиционный переключатель «I-0» включения/отключения питания КТ-3 в положение «0», соответствующее отключению питания.
- 7.4 Подсоединить к клемме «заземление» на задней стенке калибратора контур заземления. Сопротивление заземления не должно превышать 0,1 Ом.
 - 7.5 Опробование
- 7.5.1 Подсоединить сетевой кабель к разъему «220 В» и подключить КТ-3 к электрической сети.
- 7.5.2 Проверить версию и цифровой идентификатор (контрольную сумму) встроенного программного обеспечения.

Для определения версии и контрольной суммы необходимо перед включением питания прибора нажать на кнопку «Установки», затем, удерживая (2-3 секунды) ее, включить питание КТ-3. На

дисплее должна появиться информация о контрольной сумме «CS.4AC7», а затем и версии встроенного ΠO - « Π . 2.0».

Установить двухпозиционный переключатель «I-0» включения/отключения питания КТ-3 в положение «0», соответствующее отключению питания.

- 7.5.3 Установить двухпозиционный переключатель «I-0» в положение «I». При этом заработает вентилятор обдува КТ-3 и включится дисплей калибратора. На дисплее КТ-3 появится начальная заставка «[С]' 2001». Через 15 секунд в верхней (основной) строке индикатора появится текущая температура основного блока КТ-3, а в нижней (вспомогательной) строке заданная температура. Значение текущей температуры должно быть близким к комнатной.
- $7.5.4~\mathrm{C}$ помощью кнопок управления (п.4.4.3) задать температуру 300 °C. Через несколько секунд показания в верхней строке цифрового индикатора начнут увеличиваться.

8 ПОРЯДОК РАБОТЫ И МЕТОДИКА ИЗМЕРЕНИЙ

8.1 Поместить поверяемые (калибруемые) термопреобразователи в КТ-3. Термопреобразователи устанавливаются в каналы соответствующего диаметра. Разность диаметров между каналом и термопреобразователем не должна превышать 1 мм.

Подготовка и работа с поверяемыми (калибруемыми) термопреобразователями, измерение характеристик термопреобразователей при воспроизводимых температурах производится в соответствии с их эксплуатационной документацией.

- 8.2 Включить КТ-3, установив двухпозиционный переключатель «I-0» в положение «I».
- 8.3 С помощью кнопок управления задать требуемое значение температуры.
- 8.4 После выхода КТ-3 на рабочий режим (начало отсчета времени таймером в нижней строке дисплея) определить характеристики поверяемых (калибруемых) термопреобразователей при данной температуре.
- 8.5 При необходимости установить другие значения температур (согласно п.8.3) и повторить процедуры по п.8.4 для вновь заданных температур.
 - 8.6 По окончании работы выключить КТ-3 в следующем порядке:
 - -установить температуру КТ-3 менее 50 °C;
 - -в целях безопасности дождаться охлаждения калибратора до температуры не более 500 °C;
 - -отсоединить КТ-3 от сети;
 - -зафиксировать время работы КТ-3 (в листе учета наработки).

9 МЕТОДИКА ПОВЕРКИ

- 9.1 Поверку КТ-3 проводят органы Государственной метрологической службы или другие уполномоченные органы и организации, имеющие право поверки. Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются ПР 50.2.006-94 «ГСИ. Поверка средств измерений. Организация и порядок проведения».
 - 9.2 Интервал между поверками 1 год.
 - 9.3 Операции поверки

При проведении поверки должны быть выполнены операции, указанные в таблице 3.

Таблица 3

Наиманорания опарации	Номер пункта	Обязательность проведения операций при	
Наименование операции		первичной поверке	периодиче- ской поверке
1 Внешний осмотр	9.8.1	да	да
2 Опробование	9.8.2	да	да
3 Проверка электрической прочности сопротивления изоляции	9.8.3	да	нет
4 Определение электрического сопротивления изоляции	9.8.4	да	да
5 Определение метрологических характеристик	9.8.5	да	да

9.4 Средства поверки

При проведении поверки КТ-2 должны применяться средства измерения и оборудование, приведенные в таблице 4^3 .

Таблица 4

Наименование и тип	Номер пункта	Обозначение документа	Предел измере- ний	Погрешность
Измеритель температуры многоканальный прецизионный МИТ-8.10	9.8.5	TY 4211-102- 56835627-10	-200 1200 °C	±(0,004 ÷ 0,15) °C
Термометр сопротивления платиновый вибропрочный ПТСВ-3 3-го разряда	9.8.5	ТУ 4211-240- 45757982-2002 ГОСТ 8.558-93	-50 500 °C	±0,07 °C
Термопара образцовая платинородий – платиновая ППО 1-го разряда	9.8.5	ТУ 50-104-83	300 1200 °C	±(0,3 ÷ 0,6) °C
Термопара платинородий – платиновая ППО 3-го разряда	9.8.5	ТУ 50-104-83	300 1200 °C	±(1,0 ÷ 1,8) °C
Мегомметр Ф 4102/1-1M	9.8.4	ТУ 25-7534.005-87	0 2000 МОм	кл. 0,5
Установка пробойная УПУ-1М	9.8.4	А32.771.00ТУ	Напряжение 1500 В	

Все средства измерения, используемые при поверке, должны иметь действующие свидетельства о поверке, а используемое оборудование должно быть аттестовано.

- 9.5 Требования к квалификации поверителей
- 9.5.1 Квалификация лиц, проводящих поверку КТ-3, должна быть не ниже инженера.
- 9.5.2 Лица, проводящие поверку КТ-3, должны иметь практический опыт работы с теплофизическими установками.
 - 9.6 Требования безопасности
- 9.6.1 Все работы при проведении поверки должны производится с соблюдением требований безопасности, приведенных в разделе 6 настоящего руководства по эксплуатации.
- 9.6.2 Требования безопасности при проверке прочности изоляции и определении ее сопротивления в соответствии с ГОСТ Р 52931 и ГОСТ 12.3.019-80.
- 9.6.3 При проведении поверки необходимо также соблюдать меры безопасности, изложенные в технической документации на используемые средства поверки.
 - 9.7 Условия поверки и подготовка к ней
- 9.7.1 При проведении поверки должны быть соблюдены условия эксплуатации, изложенные в п.2.9.
- 9.7.2 Подготовка к поверке КТ-3 проводится в объеме работ, необходимых для подготовки его к измерениям. Подготовительные работы осуществляются в соответствии с п.7.1... 7.4.
- 9.7.3 Подготовить средства, применяемые при поверке, в соответствии с эксплуатационной документацией.
- 9.7.4 Перед проведением операций поверки после включения питания прогреть поверяемый КТ-3 не менее 1 часа при установленном значении температуры не более температуры окружающей среды.
 - 9.8 Проведение поверки

Операции, производимые со средствами поверки и с поверяемым КТ-3, должны соответствовать указаниям, приведенным в эксплуатационной документации.

- 9.8.1 Внешний осмотр осуществляется в соответствии с п.7.1.
- 9.8.2 Опробование проводится в соответствии с п.7.5.
- 9.8.3 Проверка электрической прочности изоляции производится на установке УПМ-1М в следующей последовательности:

³При поверке допускается применять другие средства измерений и оборудование, не уступающие по техническим и метрологическим характеристикам средствам, указанным в таблице 4.

-подключить пробойную установки УПУ-1М к закороченным контактам сетевого разъема (вилки) и к корпусу КТ-3;

-плавно поднять испытательное напряжение до значения 660±20 В и выдержать в течение 1 минуты, а затем плавно снизить испытательное напряжение до нуля.

Во время проверки не должно происходить пробоя или перекрытия изоляции.

9.8. Проверка электрического сопротивления изоляции проводится мегомметром $\Phi4102/1-1$ М. Сопротивление измерить между зажимом защитного заземления КТ-3 и контактами для подсоединения сетевого напряжения.

Сопротивление изоляции должно быть не менее 20 МОм.

9.8.5 Определение и проверка метрологических характеристик

Проверка включает в себя определение следующих метрологических характеристик КТ-3:

- -нестабильности поддержания температуры;
- -разности воспроизводимых температур в каналах одного диаметра (при их наличии);
- -неоднородности температурного поля в канале, обусловленной наличием градиента температуры по высоте канала;
- -суммарной погрешности измерителя температуры КТ-3 (включающей погрешности первичного термопреобразователя);
 - -абсолютной погрешности воспроизведения температуры КТ-3;
 - -диапазона воспроизводимых температур.

Проверка характеристик производится при температурах: 300, 500, 750, 960, 1100 °C.

- 9.8.5.1 Проверка нестабильности поддержания температуры
- 9.8.5.1.1 Установить образцовую термопару ППО в канал КТ-3 соответствующего диаметра. При установившемся рабочем режиме в течение 30 минут провести последовательные 10 измерений температуры по показаниям ППО (с помощью МИТ8.10) с интервалом в 3 минуты.
- 9.8.5.1.2 Рассчитать среднее значение температуры за 30 минут по показаниям эталонного термометра.

Для измеренных значений температуры определить максимальную разность ΔT_{τ} от среднего значения температуры.

Максимальное значение ΔT_{τ} не должно превышать значения, указанного в п.2.3.

- 9.8.5.2 Проверка разности воспроизводимых температур в каналах одного диаметра при их наличии
- 9.8.5.2.1 Установить образцовую термопару ППО в канал соответствующего диаметра. В исследуемые каналы последовательно устанавливают вспомогательный термоэлектрический преобразователь (типа ППО) соответствующего диаметра.

При установившихся температурных режимах измерить температуру образцовой термопары (T_1) и температуру вспомогательного термопреобразователя (T_2) . В каждом канале проводят серию из пяти измерений и определяют среднее значение величины $\Delta T = T_1 - T_2$.

По найденным значениям ΔT определить максимальную по абсолютной величине разность температур для всех каналов одного диаметра и при всех реализуемых температурах - δt_R .

Максимальная по модулю разность воспроизводимых температур в каналах с одинаковыми диаметрами должна быть не более значения, указанного в п.2.4.

- 9.8.5.3 Проверка неоднородности температурного поля в рабочей зоне
- 9.8.5.3.1 Неоднородность температурного поля в канале КТ-3 проверяется с использованием вспомогательного термоэлектрического преобразователя (типа ППО) по изменению его показаний при разном расстоянии Н от дна канала в пределах рабочей зоны от 0 до 40 мм.
- 9.8.5.3.2 Образцовую термопару ППО 1-го разряда и вспомогательный термоэлектрический преобразователь поместить на дно каналов соответствующих диаметров (H=0 мм). После установления рабочего режима провести серию из пяти измерений температуры образцовым $T_{\rm O}$ и вспомогательным $T_{\rm B}$ термопреобразователями. Вычислить среднее значение $\Delta T_{\rm H0} = T_{\rm O} T_{\rm B0}$. Затем вспомогательный термопреобразователь последовательно устанавливают на высоте H, равной 20 и 40 мм от дна канала. Каждый раз по истечении 10 минут провести серию из пяти измерений температуры $T_{\rm O}$ и $T_{\rm BH}$.

Вычислить средние значения ΔT_{H20} = $(T_O$ - $T_{B20})$ - ΔT_{H0} и ΔT_{H40} = $(T_O$ - $T_{B40})$ - ΔT_{H0} .

Вычислить значение $\Delta T_{HCP} = (\Delta T_{H20} + \Delta T_{H40})/2$.

Вычислить значения: $\delta T_{H1} = |\Delta T_{H20} - \Delta T_{HCP}|$, $\delta T_{H2} = |\Delta T_{H20}|/2$ и $\delta T_{H3} = |\Delta T_{H40}|/2$.

Произвести измерения в каждой проверяемой температурной точке.

Максимальное по величине значение δT_{H1} , δT_{H2} или δT_{H3} должно быть не более значения, приведенного в п.2.5.

9.8.5.4 Определение суммарной погрешности блока измерения температуры

Суммарная погрешность блока измерения температуры (δT_t) для каждой проверяемой температуры определяется как усредненное значение разности определений температуры по показаниям эталонного термопреобразователя и дисплея КТ-3.

Установить эталонный термометр 3-го разряда (используется при температурах 300 и 500 °C) или образцовую термопару ППО 1-го разряда (используется при температурах 750, 960 и 1100 °C) в канал калибратора соответствующего диаметра. При установившемся рабочем режиме провести серию из десяти измерений температуры эталонным (образцовым) термопреобразователем (T_3) с интервалом в 1 минуту, одновременно записывая показания текущей температуры калибратора КТ-3 ($T_{\rm H}$).

Вычислить для каждого измерения разности температур $\Delta T = T_3 - T_{\text{И}}$ и средние значения разностей для серии измерений. Полученное значение определяет суммарную погрешность блока измерения температуры (δT_t).

9.8.5.5 Определение основной абсолютной погрешности воспроизведения температуры

Определение температуры при калибровке термопреобразователей в КТ-3 включает в себя погрешности метода и средств передачи значения температуры.

Основную абсолютную погрешность воспроизведения температуры при калибровке термопреобразователей определяют по формуле:

$$\Delta T_{KT-3} = 1.1 \cdot \sqrt{(\delta T_t)^2 + (0.5 \cdot \delta T_H)^2 + (\delta t_R)^2 + (\Delta T_\tau)^2 + (\delta T_3)^2 + (\delta T_{M3.AIIII3})^2},$$

где: δT_t - предел погрешности блока измерения температуры калибратора;

 δT_{H} - предел погрешности от неоднородности температурного поля в каналах блока;

 δt_R – предел погрешности из-за разности воспроизводимых температур в каналах блока КТ-3;

 ΔT_{τ} - предел погрешности из-за нестабильности поддержания температуры;

 $\delta T_{\rm 3}$ - предел погрешности определения температуры эталонным термометром или образцовой термопарой (из свидетельства о поверке);

 $\delta T_{\text{ИЗ.АППЭ}}$ - предел погрешности измерительной аппаратуры, используемой для определения температуры эталонным (образцовым) термопреобразователем при проведении поверки.

Найденные значения основной абсолютной погрешности воспроизведения температуры для каждой проверяемой точки не должны превышать значения, приведенного в п.2.2.

9.8.5.6 Проверка диапазона воспроизводимых температур

Проверку диапазона воспроизводимых температур совместить с определением основной абсолютной погрешности воспроизведения температуры по п.9.8.5.5. КТ-3 считают выдержавшим испытания, если основная абсолютная погрешность не превышает в крайних точках диапазона значений, установленных в п.2.2.

- 9.9 Оформление результатов поверки
- 9.9.1 По результатам всех измерений и расчетов ведутся протоколы, которые заверяются лицами, проводившими поверку.
- 9.9.2 Для калибратора КТ-3, прошедшего поверку, выдается свидетельство о поверке установленного образца в соответствии с ПР 50.2.006.-94.
- 9.9.3 При отрицательных результатах поверки выдается извещение о непригодности с указанием причин. КТ-3 к дальнейшему применению в качестве установки для калибровки и поверки РСИ температуры не допускается.

10 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 10.1 Условия хранения КТ-3 в транспортной таре на складе изготовителя и потребителя соответствуют условиям 1 по ГОСТ 15150-69.
- 10.2 В окружающей среде не должно содержаться паров агрессивных веществ, вызывающих коррозию материалов, из которых изготовлена аппаратура.
 - 10.3 Срок хранения не более 2-х лет.

- 10.4 КТ-3 транспортируются всеми видами транспорта в крытых транспортных средствах при наличии упаковки в тару изготовителя. Крепление тары в транспортных средствах производится согласно правилам, действующим на соответствующих видах транспорта.
- 10.5 Условия транспортирования КТ-3 соответствуют условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 50 до плюс 50 °C с соблюдением мер защиты от ударов и вибраций.

11 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 11.1 Изготовитель гарантирует соответствие КТ-3 требованиям технических условий при соблюдении потребителем условий эксплуатации, хранения и транспортирования.
 - 11.2 Гарантийный срок эксплуатации 12 месяцев с момента ввода КТ-3 в эксплуатацию.
 - 11.3 Гарантийный срок хранения 6 месяцев с момента изготовления КТ-3.
- 11.4 Изготовитель обеспечивает гарантийное обслуживание КТ-3 после истечения срока гарантии при наличии договора на гарантийное обслуживание и при соблюдении условий применения, хранения и транспортирования.

12 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

	Представитель ОТК		
МΠ	пределавитель	личная подпись	расшифровка подписи »201г.
13 СВИДЕТЕЛЬСТВО ОБ УПАК	ОВКЕ		
Калибратор температуры ваниям, предусмотренными ТУ 43		, упакован ООО	«ИзТех» согласно требо-
		Дата упаковки «	_»201г.
	Упаковку произвел		
		личная полпись	расшифровка полписи

14. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

14.1 В случае потери КТ-3 работоспособности или снижении показателей, установленных в технических условия и р.2 настоящего РЭ, при условии соблюдения требований раздела «Гарантии изготовителя», потребитель оформляет рекламационный акт в установленном порядке и направляет его по адресу:

124460, Москва к-460, а/я 56, ООО "ИзТех",

т.: (495) 665-51-43, т./ф.: (495) 585-39-38 e-mail: <u>iztech@iztech.ru</u> .

15 ЛИСТ УЧЕТА НАРАБОТКИ

Дата и время	ФИО и под-	Дата и время	ФИО и под-	Дата и время	ФИО и под-
работы	пись	работы	пись	работы	пись