УТВЕРЖДАЮ

Руководитель ГЦИ СИ, Заместитель генерального директора ФГУ-«РОСТЕСТ – МОСКВА» А.С. Евдокимов 2009 г.

Анализаторы параметров радиотехнических трактов и сигналов портативные S331E, S332E, S361E, S362E, MS2712E, MS2713E, MT8212E, MT8213E

МЕТОДИКА ПОВЕРКИ МП РТ МП РТ 1422-09

Начальник лаборатории 441 ФГУ «Ростест-Москва»

h

В.М. Барабанщиков

Начальник сектора лаборатории 441 ФГУ «Ростест-Москва»

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

per

Д.Р. Васильев

Р.А. Осин

г. Москва 2009 Настоящая методика поверки распространяется на анализаторы параметров радиотехнических трактов и сигналов портативные S331E, S332E, S361E, S362E, MS2712E, MS2713E, MT8212E, MT8213E (далее – приборы) фирмы "Anritsu Company" (США), и устанавливает методы и средства их поверки.

Межповерочный интервал – 1 год.

СОДЕРЖАНИЕ

1. ОПЕРАЦИИ ПОВЕРКИ	3
2. СРЕДСТВА ПОВЕРКИ	4
3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	5
4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
5. УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ	6
6. ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ	6
6.1. Внешний осмотр	6
6.2. Подготовка к поверке	6
7. ПРОВЕДЕНИЕ ПОВЕРКИ	6
7.1. Общие указания по проведению поверки	6
7.2. Опробование	7
7.3. Определение метрологических характеристик	7
7.3.1. Определение погрешности установки частоты в режиме измерения КСВН и потерь в трактах	7
7.3.2. Определение погрешности измерений КСВН	8
7.3.3. Определение усредненного уровня собственных шумов анализатора спектра	11
7.3.4. Определение погрешности измерения частоты анализатором спектра	12
7.3.5. Определение уровня фазовых шумов анализатора спектра	13
анализатора спектра	15
7.3.7. Определение погрешности измерения уровня мощности анализатором спектра	16
7.3.8. Определение погрешности измерителя уровня мощности7.3.9. Проверка параметров выходных импульсов анализатора E1	20
(для MT8212E, MT8213E с опцией 52)	21
8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	23
8.1. Протокол поверки	23
8.2. Свидетельство о поверке	23
8.3. Извещение о непригодности	23

1. ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица	1
гаолица	T

N₂	Наименование операции	Номер пункта	Проведение операции при поверке		
		методики	первичной	периодической	
1	Внешний осмотр	7.1	да	да	
2	Опробование	7.2	да	да	
3	Определение погрешности установки частоты в режиме измерения КСВН и потерь в трактах (все модели, кроме MS2712E, MS2713E)	7.3.1	да	да	
4	Определение погрешности измерений КСВН (все модели, кроме MS2712E, MS2713E)	7.3.2	да	да	
5	Определение усредненного уровня собственных шумов анализатора спектра (S332E ¹ , S362E ¹ , MS2712E ¹ , MS2713E ¹ , MT8212E, MT8213E)	7.3.3	да	да	
6	Определение погрешности измерения частоты анализатором спектра (S332E ¹ , S362E ¹ , MS2712E ¹ , MS2713E ¹ , MT8212E, MT8213E)	7.3.4	да	да	
7	Определение уровня фазовых шумов анализатора спектра (\$332E ¹ , \$362E ¹ , M\$2712E ¹ , M\$2713E ¹ , MT8212E, MT8213E)	7.3.5	да	да	
8	Определение уровня гармонических искажений анализатора спектра (\$332E ¹ , \$362E ¹ , M\$2712E ¹ , M\$2713E ¹ , MT8212E, MT8213E)	7.3.6	да	да	
9	Определение погрешности измерения уровня мощности анализатором спектра (S332E ¹ , S362E ¹ , MS2712E ¹ , MS2713E ¹ , MT8212E, MT8213E)	7.3.7	да	да	
10	Определение погрешности измерителя мощности (S332E ¹ , S362E ¹ , MS2712E ¹ , MS2713E ¹ , MT8212E, MT8213E)	7.3.8	да	да	
11	Проверка параметров выходных импульсов анализатора E1 (MT8212E, MT8213E ²)	7.3.9	да	да	

1. при установленной опции 29

2. при установленной опции 52

2. СРЕДСТВА ПОВЕРКИ

2.1. При проведении поверки должны применяться средства поверки, указанные в таблице 2.

	Таблица 2			
	Наименование	Номер	Требуемые	Рекомендуемый тип
N⁰	средства	пункта	технические	средства поверки и его технические
	поверки	методики	характеристики	характеристики
1	2	3	4	5
			Средства измерений	
1	стандарт частоты	7.3.1 7.3.4 7.3.5	относительная погрешность частоты 10 MHz не более $\pm 1.10^{-8}$; уровень сигнала (0 + 10) dBm	стандарт частоты Stanford Research Systems FS725 относительный дрейф частоты 10 MHz за один год при температуре (23 ± 3) °C не более $\pm 1 \cdot 10^{-10}$; уровень сигнала + 7 dBm
2	частотомер	7.3.1	разрешение на частоте 2 GHz не хуже 100 Hz; вход внешней синхронизации 10 MHz	частотомер электронно-счетный Agilent 53181A с опцией 030 разрешение 1 Hz на частоте 2 GHz; вход внешней синхронизации 10 MHz
3	генератор сигналов НЧ (кроме S331E, S361E)	7.3.7 7.3.8	относительная погрешность установки уровня 0 + 20 dBm в диапазоне частот 100 kHz 10 MHz не более ± 0.3 dB	генератор сигналов произвольной формы Agilent 33220A относительная погрешность установки уровня 0 + 20 dBm в диапазоне частот 100 kHz 10 MHz не более ± 0.25 dB
4	генератор сигналов ВЧ	7.3.4 7.3.5 7.3.6 7.3.7 7.3.8	диапазон частот 10 MHz6 GHz; диапазон установки уровня (– 50 + 13) dBm; уровень фазового шума на частоте 1 GHz при отстройке от несущей частоты на 10 kHz не более – 110 dBc/Hz	генератор сигналов Agilent N5181A с опцией 506 диапазон частот 100 kHz 6 GHz; диапазон установки уровня (– 110 + 13) dBm; уровень фазового шума на частоте 1 GHz при отстройке от несущей частоты 10 kHz не более – 121 dBc/Hz
5	ваттметр СВЧ (кроме S331E, S361E)	7.3.7 7.3.8	относительная погрешность измерений мощности (-50 + 10) dBm в диапазоне частот 10 MHz6 GHz не более ± 0.3 dB	ваттметр CBЧ Rohde & Schwarz с блоком NRP и измерительным преобразователем NRP-Z11 относительная погрешность измерений мощности (– 50 + 10) dBm в диапазоне частот 10 MHz6 GHz не более ± 0.25 dB
6	меры КСВН (кроме MS2712E, MS2713E)	7.3.2	диапазон частот 2 MHz 6 GHz для S361E, S362E, MT8213E и 2 MHz 4 GHz для S331E, S332E, MT8212E; значения КСВН 1.4 и 2.0; относительная погрешность определения действительного значения КСВН = 1.4 не более ± 1.0 %; значения КСВН = 2.0 не более ± 1.5 %	нагрузки с КСВН 1.4 ± 0.05 ; 2.0 ± 0.05 из комплекта мер КСВН и полного сопротивления ЭК9-140 диапазон частот 0 4 GHz; относительная погрешность определения действительного значения КСВН 1.4 не более 1.0 %, КСВН 2.0 не более ± 1.5 % нагрузки с КСВН 1.4 ± 0.05 ; 2.0 ± 0.05 из комплекта мер КСВН и полного сопротивления ЭК9-145 (только для S361E, S362E, МТ8213E) диапазон частот 4 18 GHz; относительная погрешность определения действительного значения КСВН не более ± 1.0 %
7	аттенюатор	7.3.7 7.3.8	номинальное ослабление 3 dB, КСВН в диапазоне частот 10 MHz6 GHz не более 1.2	аттенюатор 3 dB из комплекта аттенюаторов коаксиальных фиксированных Agilent 11582A КСВН в диапазоне частот 10 MHz6 GHz не более 1.2

МП РТ 1422-09 \$331E, \$332E, \$361E, \$362E, M\$2712E, M\$2713E, MT8212E, MT8213E. Методика поверки стр. 4 из 23

1	2 3 4		4	5	
8	осциллограф (для МТ8212Е и МТ8213Е с опцией 52)	 диапазон частот 0 50 MHz; относительная погрешность измерения амплитуды импульсов не более ± 3 %; абсолютная погрешность измерения временных интервалов не более 20 пс 		осциллограф цифровой Tektronix TDS3012B с опцией TDS 3TMT и адаптерами AM75, AFTDS диапазон частот 0 200 MHz; относительная погрешность измерения амплитуды импульсов не более ± 2.5 %; абсолютная погрешность измерения временных интервалов не более 5 пс	
		Вспом	иогательные средства и при	надлежности	
9	фильтр нижних частот	7.3.6	частота среза 40 60 MHz	фильтр нижних частот Anritsu 1030- 96 частота среза 50 MHz	
10	кабели и адаптеры	разделы 7.2, 7.3	кабели BNC, N; адаптеры BNC-N	кабели BNC, N и адаптеры BNC-N Anritsu по каталогу	

2.2. Вместо указанных в таблице 2 средств поверки разрешается применять другие аналогичные средства поверки, обеспечивающие требуемые технические характеристики.

2.3. Применяемые средства поверки должны быть исправны, эталонные средства измерений поз. 1 – 8 табл. 2 поверены и иметь свидетельства о поверке.

В свидетельствах о поверке мер КСВН (поз. 6 табл. 2) должны быть указаны действительные значения метрологических характеристик, определенные при поверке.

3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица, имеющие высшее или среднетехническое образование, практический опыт в области радиотехнических измерений, и аттестованные в соответствии с ПР50.2.012-94.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1. При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

4.2. Во избежание несчастного случая и для предупреждения повреждения поверяемого прибора необходимо обеспечить выполнение следующих требований:

- подсоединение поверяемого прибора к сети должно производиться с помощью адаптера и сетевого кабеля из комплекта прибора;

- заземление поверяемого прибора и средств поверки должно производиться посредством заземляющего провода сетевого кабеля;

- запрещается подавать на вход прибора сигнал с уровнем, превышающим максимально допускаемое значение;

- запрещается работать с поверяемым прибором при снятых крышках или панелях;

- запрещается работать с прибором в условиях температуры и влажности, выходящих за

пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с прибором в случае обнаружения его повреждения.

5. УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды: - температура воздуха 23 ± 5 °C;

- относительная влажность воздуха 30 ... 80 %;
- атмосферное давление 84 ... 106.7 kPa.

6. ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1. Внешний осмотр

6.1.1. При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов;
- отсутствие механических повреждений корпуса и ослабления крепления элементов конструкции (определяется на слух при наклонах прибора);
- сохранность органов управления, четкость фиксации их положений;
- комплектность прибора.

6.1.2. При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого прибора, его направляют в ремонт.

6.2. Подготовка к поверке

6.2.1. Перед началом работы поверитель должен изучить руководство по эксплуатации поверяемого прибора, а также руководства по эксплуатации применяемых средств поверки.

6.2.2. Перед началом выполнения операций по определению метрологических характеристик прибора (раздел 7.3) используемые средства поверки и поверяемый прибор должны быть подключены к сети (220 ± 10) V; (50 ± 0.5) Нz и выдержаны во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева прибора 60 min.

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1. Общие указания по проведению поверки

7.1.1. В процессе выполнения операций результаты измерений заносятся в протокол поверки. Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа.

При получении отрицательных результатов по какой-либо операции необходимо повторить операцию.

При повторном отрицательном результате прибор следует направить в сервисный центр для проведения регулировки и/или ремонта.

7.1.2. В настоящем документе наименования клавиш на лицевой панели прибора выделены жирным шрифтом (например, **Enter**), экранных клавиш главного меню (внизу экрана) выделены квадратными скобками (например, [Freq/Dist]), экранных клавиш субменю (с правой стороны экрана) – подчеркнутым шрифтом (например, <u>Start Freq</u>), разъемов – кавычками (например, "RF Out").

7.1.3. Рекомендуемая последовательность выполнения операций поверки, описанных в разделе 7.3, может быть изменена по желанию поверителя с учетом модели поверяемого прибора и установленных опций.

7.2. Опробование

7.2.1. Подсоединить прибор к сети 220 V; 50 Hz через адаптер 40-168-R из комплекта прибора.

7.2.2. Включить прибор нажатием клавиши On/Off.

В течение примерно 30 s должна осуществиться загрузка программного обеспечения, по завершении которой прибор будет готов к работе.

Нажать клавиши **Shift**, **System**, Status. На дисплее должны отобразиться состояние заряда аккумулятора, наименование модели, серийный номер, установленные опции и версии программного обеспечения. Нажать клавишу **Esc**.

Выполнить внутреннюю диагностику нажатием клавиш Shift, System, <u>Self Test</u>. После завершения процедуры внутренней диагностики не должны появиться сообщения об ошибках. Нажать клавишу **Esc**.

При положительном результате опробования перейти к выполнению операции 7.3.1.

7.3. Определение метрологических характеристик

7.3.1. Определение погрешности установки частоты в режиме измерения КСВН и потерь в трактах (все модели, кроме MS2712E, MS2713E)

7.3.1.1. Выполнить соединение приборов по схеме, показанной на рисунке 1.

Соединить кабелем типа N разъем "RF Out" поверяемого прибора с входом высокочастотного канала "Channel 2" частотомера.

Соединить кабелем BNC вход синхронизации "Ref In" частотомера с выходом "10 MHz" стандарта частоты.

СЧ – стандарт частоты (поз. 1 табл. 2) Ч – частотомер (поз. 2 табл. 2)

7.3.1.2. На поверяемом приборе установить режим генерации непрерывного сигнала частотой 2 GHz, для чего выполнить следующие действия: [Freq/Dist], <u>Start Freq</u>, **2**, <u>GHz</u>, <u>Stop Freq</u>, **2**, <u>GHz</u>

7.3.1.3. Записать измеренное частотомером значение частоты F_M в столбец 1 таблицы 7.1.

7.3.1.4. Рассчитать и записать в столбец 3 таблицы 7.1 пределы допускаемой абсолютной погрешности Δ_F установки частоты по формуле

$$\Delta_{\rm F} = \rm N \cdot 5000 \ [Hz],$$

где N – количество полных лет со дня выпуска прибора.

 Таблица 7.1

 Измеренное значение, Нz
 Абсолютная погрешность установки частоты, Hz
 Пределы допускаемых значений абсолютной погрешности, Hz

 1
 2
 3

 F_M
 Δ_{FM} $\pm \Delta_F$

7.3.1.5. Вычислить и записать в столбец 2 таблицы 7.1 измеренное значение Δ_{FM} абсолютной погрешности установки частоты по формуле

$$\Delta_{\rm FM} = (F_{\rm M} - 2\ 000\ 000\ 000) \ [\rm Hz].$$

7.3.2. Определение погрешности измерений КСВН (все модели, кроме MS2712E, MS2713E)

7.3.2.1. Выполнить заводскую установку на поверяемом приборе, для чего нажать клавиши **Shift**, <u>Preset</u>.

7.3.2.2. Выполнить калибровку прибора в диапазоне частот 2 MHz ... 4 GHz, используя калибровочный модуль OSLN50-1 или "InstaCal" ICN50В из комплекта прибора.

Предпочтительным является использование калибровочного модуля OSLN50-1.

При использовании модуля OSLN50-1 выполнить следующие действия:

[Freq/Dist], Start Freq, 2, MHz, Stop Freq, 4, GHz

Shift, Cal

Standard, Start Cal

Следовать инструкциям на экране прибора:

- присоединить к разъему "RF Out" прибора разъем "Open" модуля и нажать Enter

- присоединить к разъему "RF Out" прибора разъем "Short" модуля и нажать Enter

- присоединить к разъему "RF Out" прибора разъем "Load" модуля и нажать Enter На экране должно появиться сообщение: "Cal Status: ON, Standard"

При использовании модуля "InstaCal" ICN50В выполнить следующие действия: [Freq/Dist], <u>Start Freq</u>, **2**, <u>MHz</u>, <u>Stop Freq</u>, **4**, <u>GHz</u>

Shift, Cal

Standard, Start Cal

Следовать инструкциям на экране прибора:

- присоединить к разъему "RF Out" прибора разъем модуля "InstaCal" ICN50В и нажать **Enter.**

На экране должно появиться сообщение: "Cal Status: ON, Standard, Insta"

7.3.2.3. Установить испытуемый прибор в режим измерений КСВН, для чего нажать **Мепи** и выбрать на экране иконку "Cable-Antenna Analyzer", затем выбрать:

[Measurements], <u>VSWR</u>

[Sweep/Setup], Data Points, "2204"

7.3.2.4. Присоединить к разъему "RF Out" испытуемого прибора нагрузку с КСВН 1.4 из комплекта мер КСВН и полного сопротивления ЭК9-140.

7.3.2.5. Установить автоматический выбор диапазона измерений:

[Amplitude], Autoscale.

На дисплее должна отобразиться траектория КСВН в частотной области.

7.3.2.6. Найти с помощью маркеров максимальное и минимальное значения КСВН в установленном диапазоне частот, для чего выполнить следующее:

[Marker], Marker, "M1", вращающейся ручкой установить маркер на максимальное наблюдаемое значение КСВН;

[Marker], Marker, "M2", вращающейся ручкой установить маркер на минимальное наблюдаемое значение КСВН

Отсчитать по шкале дисплея и записать максимальное и минимальное значения КСВН нагрузки К_М и соответствующие им частоты, измеренные при помощи маркеров, в столбцы 1 и 2 таблицы 7.2.

7.3.2.7. Записать в столбец 3 таблицы 7.2.1 действительные значения КСВН нагрузки К₀, указанные в свидетельстве о поверке (протоколе поверки) для частоты, ближайшей к отсчитанной по маркеру частоте.

Рассчитать и записать в соответствующую строку столбца 4 таблицы 7.2.1 значения измеренной абсолютной погрешности КСВН ΔК по формуле

$$\Delta \mathbf{K} = \mathbf{K}_{\mathbf{M}} - \mathbf{K}_{\mathbf{0}},$$

где K_M – отсчитанное по маркеру максимальное (минимальное) значение, K₀ – указанное в свидетельстве о поверке (протоколе поверки) действительное значение КСВН нагрузки.

7.3.2.8. Отсоединить нагрузку с КСВН 1.4 и присоединить к разъему "RF Out" испытуемого прибора нагрузку с КСВН 2.0 из комплекта мер КСВН и полного сопротивления ЭК9-140.

7.3.2.9. Выполнить действия по пунктам 7.3.2.5 – 7.3.2.7 для диапазона частот 2 MHz ... 4 GHz и KCBH = 2.0.

7.3.2.10. Отсоединить нагрузку от разъема "RF Out" прибора.
Для модели S331E выключить прибор и завершить поверку.
Для моделей S332E, МТ8212E перейти к выполнению операции 7.3.3.
Для моделей S361E, S362E, МТ8213E перейти к выполнению пункта 7.3.2.11.

Таблица	7.2.1	
---------	-------	--

Измеренное значение КСВН К _М	Частота, MHz	Значение КСВН эталонной нагрузки на данной частоте К ₀	Абсолютная погрешность измерения КСВН (K _M – K ₀)	Пределы допускаемой абсолютной погрешности измерения КСВН
1	2	3	4	5
КСВН = 1.4, диапа	азон частот 2 МН	Iz 4 GHz (S332E, S3	61E, MT8212E, MT8	213E)
Максимальное из	меренное значен	ие		
				± 0.056
Минимальное изм	еренное значени	ле		
				± 0.056
КСВН = 2.0, диапазон частот 2 MHz 4 GHz (S332E, S361E, MT8212E, MT8213E)				
Максимальное измеренное значение				
				± 0.14
Минимальное измеренное значение				
				± 0.14

7.3.2.11. Выполнить калибровку прибора в диапазоне частот 4 ... 6 GHz в соответствии с пунктом 7.3.2.2, установив Start Freq = 4 GHz, Stop Freq = 6 GHz.

7.3.2.12. Присоединить к разъему "RF Out" поверяемого прибора нагрузку с КСВН 1.4 из комплекта мер КСВН и полного сопротивления ЭК9-145.

7.3.2.13. Установить маркер на частоту 4 GHz, для чего выполнить следующее: [Marker], Marker, "M1", вращающейся ручкой переместить маркер на частоту 4 GHz.

7.3.2.14. Перемещая подвижную деталь нагрузки, найти максимальное К_{МАХ} и минимальное К_{МIN} значения отсчета маркера и записать их в столбцы 2 и 3 таблицы 7.2.2.

7.3.2.15. Рассчитать и записать в соответствующую строку столбца 4 таблицы 7.2.2 измеренное значение КСВН K_M по формуле

$$K_{\rm M} = \sqrt{K_{\rm MAX} \cdot K_{\rm MIN}},$$

где К_{МАХ} и К_{МІN} – отсчитанные по маркеру максимальное и минимальное значения КСВН в пункте 7.3.2.14.

7.3.2.16. Выполнить действия по пунктам 7.3.2.13 – 7.3.2.15 для остальных значений частоты, указанных в столбце 1 таблицы 7.2.2.

7.3.2.17. Записать в столбец 5 таблицы 7.2.2 действительные значения КСВН нагрузки К₀, указанные в свидетельстве о поверке (протоколе поверки) для соответствующей частоты. Рассчитать и записать в соответствующую строку столбца 6 таблицы 7.2.2 значения измеренной абсолютной погрешности КСВН ΔК по формуле

$$\Delta \mathbf{K} = \mathbf{K}_{\mathrm{M}} - \mathbf{K}_{\mathrm{0}},$$

где К_М – рассчитанное по формуле пункта 7.3.2.15 КСВН, К₀ – указанное в свидетельстве о поверке (протоколе поверки) действительное значение КСВН нагрузки.

Гаоли	Гаолица 7.2.2					
Частота, GHz	Измеренные значения КСВН			Значение КСВН	Абсолютная погрешность	Пределы допускаемых значений
	K _{MAX}	$\mathbf{K}_{ ext{MIN}}$	K _M	эталонной нагрузки К ₀	$\frac{\mathbf{KCBH}}{(\mathbf{K}_{\mathbf{M}} - \mathbf{K}_{0})}$	аосолютнои погрешности измерения КСВН
1	2	3	4	5	6	7
КСВН = 1.4,	диапазон час	стот 4 6 G	Hz (S362E, M	T8213E)		
4.0						± 0.084
4.5						± 0.084
5.0						± 0.084
5.5						± 0.084
6.0						± 0.084
КСВН = 2.0,	диапазон час	стот 4 6 GI	Hz (S362E, M	T8213E)		
4.0						± 0.20
4.5						± 0.20
5.0						± 0.20
5.5						± 0.20
6.0						± 0.20

Таблица 7 2 2

7.3.2.18. Отсоединить нагрузку с КСВН 1.4 и присоединить к разъему "RF Out" испытуемого прибора нагрузку с КСВН 2.0 из комплекта мер КСВН и полного сопротивления ЭК9-145.

7.3.2.19. Выполнить действия по пунктам 7.3.2.13 – 7.3.2.17 для диапазона частот 4 ... 6 GHz и КСВН = 2.0.

7.3.2.20. Отсоединить нагрузку от разъема "RF Out" прибора. Для модели S361E выключить прибор и завершить поверку. Для моделей S362E, MT8213E перейти к выполнению операции 7.3.3.

7.3.3. Определение усредненного уровня собственных шумов анализатора спектра (S332E, S362E, MS2712E, MS2713E, MT8212E, MT8213E)

7.3.3.1. Присоединить к разъему "RF In" поверяемого прибора согласованную нагрузку (поз. 8 табл. 2).

7.3.3.2. Установить поверяемый прибор в режим анализатора спектра, для чего нажать **Menu** и выбрать на экране иконку "Spectrum Analyzer".

7.3.3.3. Выполнить заводскую установку на поверяемом приборе (7.3.2.1).

7.3.3.4. Выполнить начальные установки на анализаторе спектра прибора: [Amplitude], <u>Reference Level</u>, – **70**, <u>dBm</u>, <u>AutoAtten Off</u>, <u>Atten Lvl</u>, **0**, Enter Shift, Trace, <u>Trace A</u>, <u>Trace A Operations</u>, <u>Average-A</u>, <u># of Averages 10</u>

7.3.3.5. Установить полосу пропускания, начальную и конечную частоты обзора: [BW], <u>RBW</u>, 1, <u>MHz</u>, <u>VBW</u>, 10, <u>kHz</u>
[Freq], <u>Start Freq</u>, 10, <u>MHz</u>, <u>Stop Freq</u>, 800, <u>MHz</u>

7.3.3.6. После завершения 10-ти усреднений найти пик сигнала и поместить его в центр экрана, для чего выбрать:

[Marker], Marker 1 On, Peak Search, Marker Freq to Center

7.3.3.7. Перевести анализатор в режим минимальной полосы пропускания, для чего сделать следующие установки:

[Span], 1, <u>kHz</u>, [BW], <u>RBW</u>, 10, <u>Hz</u>, <u>VBW</u>, 1, <u>Hz</u>

7.3.3.8. После завершения 10-ти усреднений записать отсчет маркера в левом верхнем углу дисплея в первую строку столбца 3 таблицы 7.3.

Таблица 7.3			
Начальная частота обзора, MHz	Конечная частота обзора, MHz	Измеренное значение уровня шума, dBm	Верхний предел допускаемых значений уровня шума, dBm
1	2	3	4
все модели			
10	800		- 131
800	1600		- 131
1600	2400		- 131
2400	3200		- 127
3200	4000		- 127
S362E, MS2713E			
4000	5000		- 124
5000	6000		- 116

7.3.3.9. Выполнить действия по пунктам 7.3.3.5 – 7.3.3.9 для всех остальных значений начальной (Start Freq) и конечной (Stop Freq) частоты обзора, указанных в столбцах 1 и 2 таблицы 7.3.

7.3.4. Определение погрешности измерения частоты анализатором спектра (S332E, S362E, MS2712E, MS2713E, MT8212E, MT8213E)

7.3.4.1. Выполнить соединение приборов по схеме, показанной на рисунке 2. Соединить кабелем BNC с использованием адаптера BNC-N выход "10 MHz" стандарта частоты с входом "RF In" поверяемого прибора.

7.3.4.2. Выполнить заводскую установку на поверяемом приборе (7.3.2.1).

Рисунок 2 П – поверяемый прибор СЧ – стандарт частоты (поз. 1 табл. 2)

7.3.4.3. Установить поверяемый прибор в режим анализатора спектра, для чего нажать **Menu** и выбрать на экране иконку "Spectrum Analyzer".

Выполнить следующие установки: [Amplitude], <u>Reference Level</u>, **10**, <u>dBm</u> [Freq], <u>Center Freq</u>, **10**, <u>MHz</u>, [Span], **50**, <u>kHz</u>, [BW], <u>RBW</u>, **1**, <u>kHz</u>, <u>VBW</u>, **30**, <u>Hz</u>

7.3.4.4. Измерить при помощи маркера частоту сигнала:
[Marker], <u>More</u>, <u>Counter Marker On</u>
Записать отсчет частоты F_M по маркеру в столбец 2 таблицы 7.4.

Измеренное значение, Нz	Абсолютная погрешность установки частоты, Hz	Пределы допускаемых значений абсолютной погрешности, Нz
1	2	3
F _M	$\Delta_{ m FM}$	$\pm \Delta_{ m F}$

7.3.4.5. Рассчитать и записать в столбец 3 таблицы 7.4 пределы допускаемой абсолютной погрешности Δ_F измерения частоты по формуле

$$\Delta_{\rm F} = (15 + N \cdot 10) \, [{\rm Hz}],$$

где N – количество полных лет со дня выпуска прибора.

7.3.4.6. Вычислить и записать в столбец 2 таблицы 7.4 измеренное значение Δ_{FM} абсолютной погрешности измерения частоты по формуле

$$\Delta_{\rm FM} = (F_{\rm M} - 10\ 000\ 000)\ [\rm Hz].$$

7.3.5. Определение уровня фазовых шумов анализатора спектра (S332E, S362E, MS2712E, MS2713E, MT8212E, MT8213E)

7.3.5.1. Выполнить соединение приборов по схеме, показанной на рисунке 3. Соединить кабелем BNC выход синхронизации "Ref Out" генератора с входом синхронизации "External Reference In" поверяемого прибора.

Соединить кабелем типа N выход генератора BЧ "RF Out" с входом "RF In" поверяемого прибора через аттенюатор 3 dB.

Рисунок 3 П – поверяемый прибор ГВЧ – генератор сигналов Agilent E8241A А – аттенюатор 3 dB из комплекта Agilent 11582A

7.3.5.2. Установить на генераторе уровень 3 dBm и частоту 1 GHz.

7.3.5.3. Установить поверяемый прибор в режим анализатора спектра, для чего нажать **Мени** и выбрать на экране иконку "Spectrum Analyzer".

7.3.5.4. Выполнить заводскую установку на поверяемом приборе (7.3.2.1), после чего выполнить следующее:

[Freq], <u>Center Freq</u>, 1, <u>GHz</u>, [Freq]
[Span], 40, <u>kHz</u>, [BW], <u>RBW</u>, 1, <u>kHz</u>, <u>VBW</u>, 30, <u>Hz</u>
[Amplitude], <u>Reference Level</u>, 5, Enter
Shift, Trace, <u>Trace A</u>, <u>Trace A Operations</u>, <u>Average-A</u>, <u># of Averages 10</u>

7.3.5.5. Найти пик сигнала и включить дельта-маркер: [Marker], <u>Peak Search</u>, <u>Delta On</u>

7.3.5.6. Установить при помощи вращающейся ручки маркер на + (10 ± 0.1) kHz от центральной частоты и записать отсчет маркера в столбец 2 таблицы 7.5.

7.3.5.7. Установить при помощи вращающейся ручки маркер на – (10 ± 0.1) kHz от центральной частоты и записать отсчет маркера в столбец 2 таблицы 7.5.

7.3.5.8. Рассчитать и записать в столбец 3 таблицы 7.5 измеренные значения уровня фазовых шумов P_N по формуле

$$P_{\rm N}=P_{\rm M}-30~{\rm dB},$$

где Рм-отсчет маркера.

Таблица 7.5

Отстройка от центральной частоты, kHz	Отсчет маркера, dB	Измеренное значение уровня фазовых шумов, dBc/Hz	Верхний предел допускаемых значений уровня фазовых шумов, dBc/Hz
1	2	3	4
+ 10			- 100
- 10			- 100

МП РТ 1422-09 S331E, S332E, S361E, S362E, MS2712E, MS2713E, MT8212E, MT8213E. Методика поверки стр. 14 из 23

7.3.6. Определение уровня гармонических искажений анализатора спектра (S332E, S362E, MS2712E, MS2713E, MT8212E, MT8213E)

7.3.6.1. Выполнить соединение приборов по схеме, показанной на рисунке 4.

Соединить кабелем BNC выход синхронизации "Ref Out" генератора с входом синхронизации "External Reference In" поверяемого прибора.

Присоединить к выходу генератора ВЧ "RF Output" фильтр нижних частот.

Соединить кабелем типа N выход фильтра нижних частот с входом "RF In" поверяемого прибора через аттенюатор 20 dB.

Рисунок 4 П – поверяемый прибор ГВЧ – генератор сигналов Agilent E8241A А – аттенюатор 20 dB из комплекта Agilent 11582A ФНЧ – фильтр нижних частот Anritsu 1030-96

7.3.6.2. Установить на генераторе уровень – 10 dBm и частоту F1 = $0.75 \cdot$ Fc, где Fc – частота среза фильтра нижних частот (при использовании фильтра с частотой среза 50 MHz частота генератора должна быть 37.5 MHz).

7.3.6.3. Установить поверяемый прибор в режим анализатора спектра, для чего нажать **Мени** и выбрать на экране иконку "Spectrum Analyzer".

7.3.6.4. Выполнить заводскую установку на поверяемом приборе (7.3.2.1), после чего выполнить следующие действия:

[Freq], <u>Center Freq</u>, **37.5**, <u>MHz</u>

[Span], 100, <u>kHz</u>, [BW], <u>RBW</u>, 1, <u>kHz</u>, <u>VBW</u>, 10, <u>Hz</u>

[Amplitude], <u>Reference Level</u>, – 25, <u>dBm</u>

Нажать клавиши [Marker], <u>Peak Search</u> и записать отсчет маркера в столбец 1 таблицы 7.6.

Таблица 7.6			
Отсчет	Отсчет	Измеренный	Верхний
маркера на основной	маркера на второй	уровень второй	допускаемый предел
гармонике сигнала,	гармонике сигнала,	гармоники,	уровня второй
dBm	dBm	dBc	гармоники, dBc
1	2	3	4
			- 56

7.3.6.5. Установить центральную частоту на частоту второй гармоники (75 MHz при использовании ФНЧ с частотой среза 50 MHz):

МП РТ 1422-09 S331E, S332E, S361E, S362E, MS2712E, MS2713E, MT8212E, MT8213E. Методика поверки стр. 15 из 23

[Freq], <u>Center Freq</u>, **75**, <u>MHz</u> Нажать клавиши [Marker], <u>Peak Search</u> записать отсчет маркера в столбец 2 таблицы 7.6.

7.3.6.6. Рассчитать и записать в столбец 3 таблицы 7.6 измеренный относительный уровень второй гармоники А₂ по формуле

$$\mathbf{A}_2 = \mathbf{P}_2 - \mathbf{P}_1,$$

где Р₁ и Р₂ – отсчеты маркера соответственно на основной и второй гармониках.

7.3.7. Определение погрешности измерения уровня мощности анализатором спектра (S332E, S362E, MS2712E, MS2713E, MT8212E, MT8213E)

7.3.7.1. Выполнить соединение приборов по схеме, показанной на рисунке 5. Соединить кабелем BNC выход "Output" генератора HЧ с входом "RF In" поверяемого прибора, используя адаптер BNC-N.

Рисунок 5 П – поверяемый прибор ГНЧ – генератор сигналов Agilent 33120A

7.3.7.2. Установить испытуемый прибор в режим анализатора спектра, для чего нажать **Мепи** и выбрать на экране иконку "Spectrum Analyzer".

7.3.7.3. Выполнить заводскую установку на испытуемом приборе (7.3.2.1), после чего сделать следующие установки:

[Freq], <u>Center Freq</u>, **100**, <u>kHz</u>, [Span], **1**, <u>kHz</u>, [BW], <u>RBW</u>, **100**, <u>Hz</u>, <u>VBW</u>, **10**, <u>Hz</u> [Amplitude], <u>Reference Level</u>, **30**, <u>dBm</u>

7.3.7.4. Установить на генераторе НЧ уровень 0 dBm и частоту 100 kHz.

7.3.7.5. Найти пик сигнала при помощи маркера: [Marker], <u>Peak Search</u>
Записать измеренное значение уровня в столбец 3 таблицы 7.7.1.

7.3.7.6. Устанавливать на генераторе НЧ остальные значения частоты F и уровня, указанные в столбцах 1 и 2 таблицы 7.7.1, и на поверяемом приборе соответствующие им значения центральной частоты:

[Freq], <u>Center Freq</u>, **F**, <u>MHz</u>

Записывать измеренные значения уровня в столбец 3 таблицы 7.7.1.

Таблица 7.7.1

Диапазон частот 0.1 10 MHz			
Установленные значения на генераторе		Измеренное значение	Пределы
частота, MHz	уровень dBm	уровня, dBm	допускаемых значений, dBm
1	2	3	4
0.1	0		± 1.25
0.3	0		± 1.25
1	0		± 1.25
3	0		± 1.25
10	0		± 1.25
10	+ 10		+ (8.75 11.25)
10	+ 20		+ (18.75 21.25)

7.3.7.6. Устанавливать на генераторе НЧ остальные значения частоты F и уровня, указанные в столбцах 1 и 2 таблицы 7.7.1, и на поверяемом приборе соответствующие им значения центральной частоты:

[Freq], <u>Center Freq</u>, **F**, <u>MHz</u>

Записывать измеренные значения уровня в столбец 3 таблицы 7.7.1.

7.3.7.7. Выполнить предварительное определение значений уровня генератора ВЧ по следующей процедуре.

1) Соединить приборы по схеме, показанной на рисунке 6.

Присоединить к выходу генератора ВЧ последовательно коаксиальный кабель типа N, аттенюатор 3 dB и измерительный преобразователь ваттметра.

Соединить выход измерительного преобразователя с входом ваттметра.

Рисунок б ГВЧ – генератор сигналов ВЧ (поз. 4 табл. 2) В – ваттметр СВЧ (поз. 5 табл. 2) ИПМ – измерительный преобразователь из комплекта ваттметра А1 – аттенюатор 3 dB из комплекта Agilent 11582A К – кабель коаксиальный тип N

2) Устанавливать на генераторе ВЧ значения уровня и частоты следующим образом:

- частоту в соответствии со значениями, указанными столбце 2 таблицы 7.7.2;

- уровень на 3.00 dB выше номинальных значений, указанных в столбце 1 таблицы 7.7.2.

Каждый раз подстраивать уровень на генераторе ВЧ таким образом, чтобы показание ваттметра было равно указанному в столбце 1 таблицы 7.7.2 номинальному значению уровня с отклонением в пределах ± 0.05 dB.

Записывать отображаемые на дисплее генератора ВЧ значения уровня в столбец 3 таблицы 7.7.2.

Номинальное значение уровня, dBm	Частота, MHz	Уровень на генераторе ВЧ, dBm	Измеренное значение уровня, dBm	Пределы допускаемых значений, dBm
1	2	3	4	5
S332E, S362E, M	S2712E, MS2713E, N	1T8212E, MT8213E		
+ 10	50			+ (8.75 11.25)
	1000			+ (8.75 11.25)
	3990			+ (8.75 11.25)
	10			± 1.25
	50			± 1.25
	300			± 1.25
0	1000			± 1.25
	2000			± 1.25
	3000			± 1.25
	3990			± 1.25
	50			- (8.75 11.25)
- 10	2000			- (8.75 11.25)
	3990			- (8.75 11.25)
	50			- (18.75 21.25)
-20	1000			- (18.75 21.25)
	3990			- (18.75 21.25)
	50			- (28.75 31.25)
	1000			- (28.75 31.25)
- 30	2000			- (28.75 31.25)
	3000			- (28.75 31.25)
	3990			- (28.75 31.25)
- 40	50			- (38.75 41.25)
	2000			- (38.75 41.25)
	3990			- (38.75 41.25)
- 50	50			- (48.75 51.25)
	1000			- (48.75 51.25)
	2000			- (48.75 51.25)
	3000			- (48.75 51.25)
	3990			- (48.75 51.25)

Таблица 7.7.2

1	2	3	4	5
S362E, MS2713E	, MT8213E			
0	5000			± 1.50
	5990			± 1.50
- 10	5000			- (8.50 11.50)
	5990			- (8.50 11.50)
- 20	5000			- (18.50 21.50)
	5990			- (18.50 21.50)
- 30	5000			- (28.50 31.50)
	5990			- (28.50 31.50)
- 40	5000			- (38.50 41.50)
	5990			- (38.50 41.50)
- 50	5000			- (48.50 51.50)
	5990			- (48.50 51.50)

7.3.7.8. Выполнить соединение приборов по схеме, показанной на рисунке 7. Соединить кабелем BNC выход синхронизации "Ref Out" генератора с входом

синхронизации "External Reference In" поверяемого прибора. Соединить кабелем типа N выход генератора BЧ "RF Output" с входом "RF In"

соединить каоелем типа N выход генератора ВЧ "КГ Оцтрит" с входом "КГ In" поверяемого прибора через аттенюатор 3 dB. Использовать тот же кабель, что и при соединении по схеме рисунка 6 при выполнении пункта 7.3.7.7.

Рисунок 7 П – поверяемый прибор ГВЧ – генератор сигналов ВЧ (поз. 4 табл. 2) А – аттенюатор 3 dB из комплекта Agilent 11582A К – кабель коаксиальный тип N

7.3.7.9. Выполнить следующие установки на поверяемом приборе: [Span], **10**, <u>kHz</u>, [BW], <u>RBW</u>, **1**, k<u>Hz</u>, <u>VBW</u>, **30**, <u>Hz</u> [Amplitude], <u>Reference Level</u>, **12**, <u>dBm</u>

7.3.7.10. Устанавливать на генераторе ВЧ значения частоты, указанные в столбце 2 таблицы 7.7.2, и значения уровня, записанные в соответствующей строке столбца 3 таблицы 7.7.2 при выполнении пункта 7.3.7.7.

Каждый раз на поверяемом приборе устанавливать соответствующие им значения F центральной частоты:

[Freq], <u>Center Freq</u>, **F**, <u>MHz</u> (<u>GHz</u>) Находить пик сигнала при помощи маркера: [Marker], <u>Peak Search</u>

Для устранения флуктуации отсчетов маркера можно ввести режим усреднений, для чего выполнить:

Shift, Trace, Trace A, Trace A Operations, Average-A, # of Averages 10 (20; 30)

Записывать измеренные маркером значения уровня в столбец 4 таблицы 7.7.2.

7.3.8. Определение погрешности измерителя мощности (S332E, S362E, MS2712E, MS2713E, MT8212E, MT8213E)

7.3.8.1. Выполнить предварительное определение значений уровня генератора ВЧ по следующей процедуре.

Соединить приборы по схеме, показанной на рисунке 6.
 Присоединить к выходу генератора ВЧ коаксиальный кабель типа N.
 Присоединить к разъему кабеля измерительный преобразователь ваттметра.
 Соединить выход измерительного преобразователя с входом ваттметра.

2) Устанавливать последовательно на генераторе ВЧ значения уровня и частоты, указанные в столбцах 1 и 2 таблицы 7.8.

Каждый раз подстраивать уровень на генераторе ВЧ таким образом, чтобы показание ваттметра было равно указанному в столбце 1 таблицы 7.8 номинальному значению уровня с отклонением в пределах ± 0.05 dB.

Записывать отображаемые на дисплее генератора ВЧ значения уровня в столбец 3 таблицы 7.8.

7.3.8.2. Установить испытуемый прибор в режим анализатора спектра, для чего нажать **Menu** и выбрать на экране иконку "Spectrum Analyzer".

Выполнить заводскую установку на поверяемом приборе (7.3.2.1).

7.3.8.3. Выполнить соединение приборов по схеме, показанной на рисунке 7.

Соединить кабелем типа N выход генератора BЧ "RF Output" с входом "RF In" поверяемого прибора. Использовать тот же кабель, что и при соединении по схеме рисунка 6 при выполнении пункта 7.3.7.7.

Кабель BNC от входа синхронизации поверяемого прибора можно отсоединить.

7.3.8.4. Сделать установки на поверяемом приборе: [Freq], <u>Span</u>, **10**, <u>MHz</u> [Average], <u>Acquisition Med</u>

7.3.8.5. Устанавливать на генераторе ВЧ значения частоты, указанные в столбце 2 таблицы 7.8, и значения уровня, записанные в соответствующей строке столбца 3 таблицы 7.8 при выполнении пункта 7.3.8.1.

Каждый раз на поверяемом приборе устанавливать соответствующие значения F центральной частоты:

[Freq], <u>Center Freq</u>, **F**, <u>MHz</u> (<u>GHz</u>)

При установке нового значения уровня на генераторе устанавливать автоматический выбор диапазона:

[Amplitude], Auto Scale

Записывать показания поверяемого прибора в столбец 4 таблицы 7.8.

таолица /	.0			
Номинальное значение уровня, dBm	Частота, MHz	Уровень на генераторе ВЧ, dBm	Измеренное значение уровня, dBm	Пределы допускаемых значений, dBm
1	2	3	4	5
S332E, S362E, M	S2712E, MS2713E,	, MT8212E, MT8213I	E	
+ 10	15			+ (8.75 11.25)
	50			+ (8.75 11.25)
	1000			+ (8.75 11.25)
	2000			+ (8.75 11.25)
	3000			+ (8.75 11.25)
	3990			+ (8.75 11.25)
	50			- (18.75 21.25)
- 20	1000			- (18.75 21.25)
	3990			- (18.75 21.25)
	50			- (48.75 51.25)
- 50	1000			- (48.75 51.25)
	3990			- (48.75 51.25)
S362E, MS2713E	C, MT8213E			
+ 10	5000			+ (8.50 11.50)
	5990			+ (8.50 11.50)
- 20	5000			-(18.50 21.50)
	5990			- (18.50 21.50)
50	5000			- (48.50 51.50)
- 30	5990			- (48.50 51.50)

тс 7.0

7.3.9. Проверка параметров выходных импульсов анализатора Е1 (МТ8212Е, МТ8213Е с опцией 52)

7.3.9.1. Выполнить заводскую установку на поверяемом приборе (7.3.2.1).

7.3.9.2. Установить поверяемый прибор в режим анализатора Е1, для чего нажать Мепи и выбрать на экране иконку "E1 Analyzer".

Выполнить следующие установки:

[Configuration], Line Code HDB3, Tx Clock Internal, Connector BNC 75 Ohm [Pattern], Select Pattern

Вращающейся ручкой или клавишами со стрелками выбрать "All Ones" и нажать Enter.

7.3.9.3. Выполнить соединение приборов по схеме, показанной на рисунке 8.

Соединить кабелем BNC разъем "E1/Tx" поверяемого прибора с входом адаптера Tektronix AMT75.

Присоединить выход адаптера к входному разъему канала 1 осциллографа.

Рисунок 8 П – поверяемый прибор О – осциллограф (поз. 9 табл. 2) А – адаптер 75 Ω / 50 Ω Tektronix AMT75 (пункт 7.3.9.3) или 120 Ω / 50 Ω Tektronix AFTDS (пункт 7.3.9.6)

<u>Примечание к рисунку 8</u>: вместо фирменных адаптеров можно использовать проходные нагрузки 75 Ω и 120 Ω . Нагрузку можно сделать в виде тройника BNC с резистором типа МЛТ, припаянным между центральным и экранным проводником тройника. Сопротивление резистора должно иметь отклонение от номинала не более ± 2 %. При этом в пункте 7.3.9.4 следует выбрать входной импеданс осциллографа 1 М Ω .

7.3.9.4. Выполнить следующие установки на осциллографе.

Установить импеданс входа 1 М Ω , если используются адаптеры в соответствии с примечанием к рисунку 8.

Установить маску импульса E1 (рекомендация ITU-T G.703):

[AUTOSET], [UTILITY], System Config

Во всплывающем меню выбрать <u>Apps</u>, <u>E1 Coaxial Pair 2.048 Mb/s</u>

На экране осциллографа должны отображаться маска и импульс входного сигнала.

7.3.9.5. Убедиться в том, что траектория импульса находится в пределах, заданных маской.

Записать результат проверки (соответствует / не соответствует) в столбец 2 таблицы 7.9.

<u>Примечание</u>: Если в осциллограф не установлена карта TDS 3TMT, следует выполнить измерения параметров импульса вручную, используя вертикальные и горизонтальные курсоры осциллографа. Измеренные параметры импульса (амплитуда, выбросы на вершине и в основании, положение и длительность фронта и среза) должны соответствовать параметрам, указанным в рекомендации ITU-T G.703.

Выход поверяемого прибора	Соответствие параметров импульса E1 маске ITU-T G.703 (соответствует / не соответствует)
1	2
Несимметричный (BNC 75 Ω)	
Симметричный (RJ48С 120 Ω)	

Таблина 7.9

7.3.9.6. Выполнить соединение приборов по схеме, показанной на рисунке 8, соединив кабелем RJ48C из комплекта поверяемого прибора разъем "E1" типа RJ48C прибора с входом адаптера Tektronix AFTDS (см. примечание к рисунку 8).

Установить переключатель адаптера AFTDS в положение "120 Ω".

Присоединить выход адаптера к входному разъему канала 1 осциллографа.

7.3.9.7. Выполнить установки на поверяемом приборе:

[Configuration], <u>Line Code HDB3</u>, <u>Tx Clock Internal</u>, <u>Connector RJ48 120 Ohms</u> [Pattern], Select Pattern

Вращающейся ручкой или клавишами со стрелками выбрать "All Ones" и нажать Enter.

7.3.9.8. Выполнить действия по пунктам 7.3.9.4, 7.3.9.5, установив маску <u>E1 Symmetric</u> <u>Pair 2.048 Mb/s</u>.

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1. Протокол поверки

При выполнении операций поверки оформляется протокол в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;
- номер и дата протокола поверки
- наименование и обозначение поверенного средства измерения, установленные опции;
- заводской (серийный) номер;
- обозначение документа, по которому выполнена поверка;

- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;

- температура и влажность в помещении;
- полученные значения метрологических характеристик;
- фамилия лица, проводившего поверку.

8.2. Свидетельство о поверке

При положительных результатах поверки выдается свидетельство о поверке в соответствии с ПР50.2.006-94 с изменением № 1 от 26.11.2001.

Поверительное клеймо наносится в соответствии с ПР50.2.007-2001.

8.3. Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с ПР50.2.006-94 с изменением № 1 от 26.11.2001.