**УТВЕРЖДАЮ** Первый заместитель генерального директора – заместитель по научной работе ФУЛ «ВНИИФТРИ» А.Н. Щипунов 2013 г. М.п.

## Инструкция

-

Генераторы импульсов и кодовых последовательностей 81110A, 81111A, 81112A, 81130A, 81131A, 81132A

Методика поверки

651-13-43 МП

г.п. Менделеево 2013 г.

#### 1 Общие сведения

1.1 Настоящая методика поверки распространяется на генераторы импульсов и кодовых последовательностей 81110А, 81111А, 81112А, 81130А, 81131А, 81132А (далее – генераторы), и устанавливает порядок и объем их первичной и периодической поверок.

1.2 Интервал между поверками - 1 год.

## 2 Операции поверки

2.1 При поверке анализаторов выполнить работы в объеме, указанном в таблице 1.

Таблица 1

1

5

| Таолица Т                         |              | Прогологи         | UA OTIENA  | 811104         | 81130A  |
|-----------------------------------|--------------|-------------------|------------|----------------|---------|
|                                   |              | Проведение опера- |            | <b>8</b> 1111Δ | 81131A  |
|                                   | -            | ции               | <u>при</u> | 81117Δ         | 81137A  |
|                                   | Номер пункта | первич-           | перио-     | 01112A         | 0112411 |
| Наименование операции             | методики по- | ной по-           | порно-     |                |         |
|                                   | верки        | верке             | ской по-   |                |         |
|                                   | -            | (после            | Denke      |                |         |
|                                   |              | ремонта)          | верке      |                |         |
| 1 Внешний осмотр                  | 8.1          | да                | да         | +              | +       |
| 2 Опробование                     | 8.2          | да                | да         | +              | +       |
| 3 Идентификация программного      | 8.3          | да                | да         | +              | +       |
| обеспечения                       |              |                   |            |                |         |
| 4 Определение диапазона частот,   |              |                   |            |                |         |
| погрешности установки частоты,    |              |                   |            |                | +       |
| диапазона установки периода и по- | 8.4          | да                | да         | Т              |         |
| грешности установки диапазона пе- |              |                   |            |                |         |
| риода                             |              |                   |            |                |         |
| 5 Определение длительности им-    | 0.7          |                   |            | +              | +       |
| пульса и погрешности длительности | 8.5          | да                | да         |                |         |
| импульса                          |              |                   |            |                |         |
| 6 Определение времени задержки    | 0.7          |                   | по         | +              | +       |
| импульса и погрешности времени    | 8.6          | да                | Да         | T              |         |
| задержки импульса                 |              |                   |            | <u> </u>       |         |
| 7 Определение времени задержки    |              |                   |            |                |         |
| парного импульса и погрешности    | 8.7          | да                | да         | +              | -       |
| времени задержки парного импуль-  | I            |                   |            |                |         |
| са                                | 0.0          |                   | <u>ег</u>  | +              | +       |
| 8 Определение джиттера            | 8.8          | да                | да         | +              |         |
| 9 Определение значения диапазона  |              |                   |            |                |         |
| устанавливаемого напряжения и по- | 8.9          | да                | да         | +              | +       |
| грешности устанавливаемого на-    |              |                   |            |                |         |
| пряжения                          |              | <u>+</u>          | +          | <u> </u>       | 1       |
| 10 Определение времени нараста-   | 0 10         |                   | ла         | +              | -       |
| ния/спада сигнала и погрешности   | 8.10         | Да                | Да         |                |         |
| времени нарастания/спада сигнала  |              | <u> </u>          | <u> </u>   |                |         |

2.2 При получении отрицательных результатов при выполнении любой из операций поверка прекращается и прибор бракуется.

## 3 Средства поверки

3.1 При проведении поверки использовать средства измерений и вспомогательное оборудование, представленные в таблице 2.

Таблица 2

| № пунктов ме-  | Наименование рабочих эталонов или вспомогательных средств поверки; но-                   |
|----------------|------------------------------------------------------------------------------------------|
| тодики повер-  | мер документа регламентирующего технические требования к рабочим эта-                    |
| ки             | лонам или вспомогательным средствам; разряд по государственной повероч-                  |
|                | ной схеме и (или) метрологические и основные технические характеристики                  |
|                | средства поверки                                                                         |
| 8.5, 8.6, 8.7, | Осциллограф цифровой стробоскопический Agilent 54750A с модулем изме-                    |
| 8.8.8.10       | рительным 54752 (41684-09): полоса пропускания 50 ГГц (по уровню ±3 дБ).                 |
|                | пределы допускаемой абсолютной погрешности измерений временных ин-                       |
|                | тервалов $\pm$ (10 пс + 0,001 $\times$ t), где t - измеряемое значение временного интер- |
|                | вала, пс                                                                                 |
| 8.4, 8.5, 8.6  | Частотомер электронно-счетный Agilent 53132A (26211-03) с опциями 010.                   |
|                | 030: диапазон измеряемых частот от 0 до 3 ГГц, погрешность по частоте                    |
|                | 2,5 10 <sup>-9</sup>                                                                     |
| 8.9            | Мультиметр Agilent 3458А (25900-03): диапазон измерений напряжения пе-                   |
|                | ременного тока от 10 мВ до 1000 В, диапазон частот от 1 Гц до 10 МІ ц. по-               |
|                | грешность измерения напряжения 0,03%.                                                    |
| 8.6            | Генератор сигналов произвольной формы 33250А (52150-12): частота повто-                  |
|                | рения от 1 мкГц до 80 МГц, пределы допускаемой абсолютной погрешности                    |
|                | частоты повторения ± 2·10 <sup>-0</sup>                                                  |
| 8.8            | Линия задержки 22 нс DL-1 SDI, диапазон частот от 0 до 4 ГГц                             |
| 8.5, 8.6, 8.8, | Фиксированный аттенюатор 20 дБ Agilent 8498А опция 020. диапазон частот                  |
| 8.10           | от 0 до 18 ГГц                                                                           |
| 8.5, 8.8       | Фиксированный аттенюатор 6 дБ Agilent 8493А опция 006. диапазон частот                   |
|                | от 0 до 12,4 ГГц                                                                         |
| 8.6, 8.8       | Делитель мощности 11667В                                                                 |
| 8.9            | Проходная нагрузка 50 Ом, 5 Вт MODEL 854 - 153 - FTT                                     |

3.2 Допускается использование других средств измерений. мер волнового сопротивления, аттенюаторов и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.

3.3 Применяемые средства поверки должны быть утверждённого типа, исправны и иметь действующие свидетельства о поверке (отметки в формулярах или паспортах).

## 4 Требования к квалификации поверителей

4.1 К проведению поверки анализаторов допускается инженерно-технический персонал со среднетехническим или высшим образованием, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющие право на поверку (аттестованными в качестве поверителей).

## 5 Требования безопасности

5.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.

. 5.2 К работе с ваттметрами допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, ГОСТ Р 51350-99, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.

5.3 При проведении поверки необходимо принять меры защиты от статического напряжения, использовать антистатические заземленные браслеты и заземлённую оснастку. Запрещается проведение измерений при отсутствии или неисправности антистатических защитных устройств.

#### 6 Условия поверки

6.1 Поверку проводить при следующих условиях:

| - температура окружающего возлуха. °С  | $23 \pm 5^*$ : |
|----------------------------------------|----------------|
| - относительная влажность воздуха. %   | от 5 до 70;    |
| - атмосферное давление. ММ рт. ст.     | от 626 до 795; |
| - напражение питания В                 | от 100 до 250; |
| $-$ hanpawenne initiani, $\mathcal{B}$ | от 50 до 60.   |
|                                        |                |

\*температура выбирается в соответствии с руководствами по эксплуатации средств поверки. Все средства измерений, использующиеся при поверке анализаторов, должны работать в нормальных условиях эксплуатации.

#### 7 Подготовка к поверке

7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:

- выполнить операции, оговоренные в документации изготовителя на поверяемый анализатор по его подготовке к работе;

- выполнить операции, оговоренные в РЭ на применяемые средства поверки по их подготовке к измерениям;

- осуществить прогрев приборов для установления их рабочих режимов.

8 Проведение поверки

8.1 Внешний осмотр

8.1.1 При внешнем осмотре проверить:

- отсутствие механических повреждений и ослабление элементов, четкость фиксации их положения;

- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность печатей и пломб;

- наличие маркировки согласно требованиям эксплуатационной документации.

8.1.2 Результаты поверки считать положительными, если выполняются все перечисленные требования. В противном случае анализатор бракуется.

8.2 Опробование

8.2.1 Подключить генератор к сети питания. Включить прибор согласно РЭ.

8.2.2 Нажать клавишу «Preset» на корпусе генератора.

8.2.3 Убедиться в возможности установки режимов измерений и настройки основных параметров и режимов измерений генератора.

8.2.4 Результаты опробования считать положительными, если при включении отсутствуют сообщения о неисправности и генератора позволяет менять настройки параметров и режимы работы.

8.3 Идентификация программного обеспечения

Проверку соответствия заявленных идентификационных данных программного обеспечения (ПО) анализатора проводить в следующей последовательности:

- проверить наименование ПО;

- проверить идентификационное наименование ПО;

- проверить номер версии (идентификационный номер) ПО;

- определить цифровой идентификатор ПО (контрольную сумму исполняемого кода).

Для расчета цифрового идентификатора применяется программа (утилита) «MD5\_FileChecker». Указанная программа находится в свободном доступе сети Internet (сайт www.winmd5.com).

Результаты поверки считать положительными, если идентификационные данные ПО соответствуют идентификационным данным, приведенным в таблице 3.

Таблица 3

| Гаолица Э                                       |                                                  |                        |                   |                     |
|-------------------------------------------------|--------------------------------------------------|------------------------|-------------------|---------------------|
| Наименование                                    | Идентифика-                                      | Номер версии           | Цифровой иден-    | Алгоритм вычисле-   |
| ПО                                              | пионное наи-                                     | (илентификаци-         | тификатор ПО      | ния цифрового иден- |
| no                                              | менвание ПО                                      | онный номер)           | (контрольная сум- | тификатора ПО       |
|                                                 |                                                  | ПО                     | ма)               |                     |
| Firmware Version for<br>Pulse Pattern Generator | Firmware Version<br>Pulse Pattern Genera-<br>tor | Не менее<br>v.01.12.00 | -                 | MD5                 |

8.4 Определение диапазона частот, погрешности установки частоты. диапазона установки периода и погрешности установки диапазона периода

8.4.1 Определение диапазона частот, погрешности установки частоты и диапазона установки периода генератора 81131А

8.4.1.1 Соединить генератор и частотомер в соответствии с рисунком 1:



Рисунок 1

8.4.1.2 Выбрать режим [MODE/TRG] и режим CONTINUOUS

8.4.1.3 На генераторе нажать клавишу [OUTPUT 1] и [OUTPUT 2] и установить выход 1 и выход 2 в соответствии с рисунками 2 и 3:

| rred r                            | 00.0MH2                                         |                 | CMODIFY      |
|-----------------------------------|-------------------------------------------------|-----------------|--------------|
| Delay<br>DtyCyc<br>LeadE<br>TraiE | Ops Offset<br>50.00% Amplit<br>0.80ns<br>=LeadE | +0.0mV<br>1.00V | 400.0<br>MHz |
| MODE/TR                           | G OUTPUT 1 C                                    | DUTPUT 2        | PATTERN      |

| Freq 4  | 00.0MHz       | $_{\rm OFF}^{\rm ON}$ 2 | MODIFY  |
|---------|---------------|-------------------------|---------|
| Delay   | 0ps Offset    | +0.0mV                  | 1100 0  |
| DtyCyc  | 50.00% Amplit | 1.00V                   |         |
| LeadE   | 0.80ns        |                         | MHz     |
| TraiE   | =LeadE Separa | te Out2                 |         |
| MODE/TH | G OUTPUT 1    | OUTPUT 2                | PATTERN |
|         | Рисун         | ок 3                    |         |

8.4.1.4 Измерить значение центральной частоты частотомером, устанавливая параметры генератора в соответствии с таблицей 1.

Таблица 1.

| Значение  | Центральная | Допустимый диапазон частот      |
|-----------|-------------|---------------------------------|
| периода   | частота     |                                 |
| 2.500 нс  | 400.000 МГц | От 399.9600 МГц до 400.0400 МГц |
| 10.00 нс  | 100 МГц     | От 99.990 МГц до 100.010 МГц    |
| 50.00 нс  | 20 МГц      | От 19.9980 МГц до 20.0020 МГц   |
| 100 нс    | 10 МГц      | От 9.9990 МГц до 10.0010 МГц    |
| 500 нс    | 2 МГц       | От 1.9998 МГц до 2.0002 МГц     |
| 1 мкс     | 1 МГц       | От 999.9 кГц до 1.0001 МГц      |
| 5.882 мкс | 170.0 кГц   | От 169.983 кГц до 170.017 кГц   |

8.4.1.5 Результаты проверки считать положительными, если измеренный диапазон частот и погрешность установки частоты генератора не превысит значений, указанных в таблице 1.

8.4.2 Определение диапазона частот, погрешности установки частоты и диапазона установки



Рисунок 4

8.4.2.2 Выбрать режим [MODE/TRG] и режим CONTINUOUS

8.4.2.3 На генераторе нажать клавишу [OUTPUT 1] и [OUTPUT 2] и установить выход 1 и выход 2 в соответствии с рисунками 5 и 6:

|         | Freq            | 660.0 <b>MHz</b>            | on 1            | CMODIFY       |
|---------|-----------------|-----------------------------|-----------------|---------------|
|         | Delay<br>DtyCyc | 0ps Offset<br>50.00% Amplit | +0.0mV<br>1.00V | 660. <u>0</u> |
| 8.4.2.4 | MODE/TH         | G OUTPUT 1 C                | OUTPUT 2        | PATTERN       |

Рисунок 5

| Freq 660.0MHz                            | $_{\rm OFF}^{\rm ON}$ 2 | MODIFY        |
|------------------------------------------|-------------------------|---------------|
| Delay Ops Offset<br>DtyCyc 50.00% Amplit | +0.0mV<br>1.00V         | 660. <u>0</u> |
| Separate<br>MODE/TRG OUTPUT 1 0          | e Out2<br>UTPUT 2       | PATTERN       |

Рисунок 6

8.4.2.5 Измерить значение центральной частоты частотомером, устанавливая параметры генератора в соответствии с таблицей 2.

| Таблица 2. |             |                                 |
|------------|-------------|---------------------------------|
| Значение   | Центральная | Допустимый диапазон частот      |
| периода    | частота     |                                 |
| 1,515 нс   | 660,000 МГц | От 659,9340 МГц до 660,0660 МГц |
| 10,00 нс   | 100 МГц     | От 99,990 МГц до 100,010 МГц    |
| 50,00 нс   | 20 МГц      | От 19,9980 МГц до 20,0020 МГц   |
| 100 нс     | 10 МГц      | От 9,9990 МГц до 10,0010 МГц    |
| 500 нс     | 2 МГц       | От 1,9998 МГц до 2,0002 МГц     |
| 1 мкс      | 1 МГц       | От 999,9 кГц до 1,0001 МГц      |
| 5.882 мкс  | 170,0 кГц   | От 169,983 кГц до 170,017 кГц   |

8.4.2.6 Результаты проверки считать положительными, если измеренный диапазон частот и погрешность установки частоты, а также диапазон установки периода генератора не превысит

значений, указанных в таблице 2.

- 8.4.3 Определение диапазона частот, диапазона установки периода и погрешности установки периода генератора 81111А
  - 8.4.3.1 Подготовить генератор к работе, проведя следующие действия:
- 8.4.3.2 Выбрать режим [MODE/TRG]
  - 8.4.3.3 Нажать клавиши: CONTINUOUS PULSES Single-Pulses at Out 1 плюс Single-Pulses at Out 2, если установлен второй канал, Pulse-Period:internal Osc.

8.4.3.4 Если установлен второй канал, выбрать MORE [CONFIG] и установить значения в соответствии с рисунком 7:



Рисунок 7

8.4.3.5 Определение диапазона установки периода (ФАПЧ ВЫКЛ)

8.4.3.5.1 Соединить генератор и частотомер в соответствии с рисунком 8:



Рисунок 8

8.4.3.5.2 На генераторе нажать клавишу MORE и установить выход 1 и выход 2 в соответствии с рисунками 9 и 10:

| Per (                             | 6.060ns                           | Normal                               | <sup>on</sup> 1          | CMODIFY              |
|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------|----------------------|
| Delay<br>DtyCyc<br>LeadE<br>TraiE | 0ps<br>50.00%<br>2.00ns<br>=LeadE | Offset<br>Amplit<br>50 $\Omega$ into | +0.0mV<br>1.00V<br>50.0Ω | 6.06 <u>0</u>        |
| MODE/TF                           | RG OUTE                           | PUT 1 OU                             | TPUT 2                   | раттеги<br>Рисунок 9 |

| Per (                             | 5.060ns Normal                                                | <sup>off</sup> 2                                 | MODIFY        |
|-----------------------------------|---------------------------------------------------------------|--------------------------------------------------|---------------|
| Delay<br>DtyCyc<br>LeadE<br>TraiE | Ops Offset<br>50.00% Amplit<br>2.00ns 50Ω in<br>=LeadE Separa | +0.0mV<br>1.00V<br>ato 50.0 $\Omega$<br>ate Out2 | 6.06 <u>0</u> |
| MODE/TR                           | G OUTPUT 1                                                    | OUTPUT 2                                         | PATTERN       |

Рисунок 10

- Замечание: Если вы поверяете оба канала, необходимо сконфигурировать оба канала и поочередно отключать канал, который не поверяется.
- 8.4.3.5.3 Установить на частотомере следующие значения:
  - FUNCTION Period A / Freq C
- INPUT A 50 Ом
  - SENSE On
    - 8.4.3.5.4 Устанавливать на генераторе значения в соответствии с таблицей 3:

| Таблица 3 |                                       |
|-----------|---------------------------------------|
| Период    | Допустимый диапазон изменения периода |
|           | без самокалибровки                    |
| 3,030 нс  | от 2,9391 нс до 3,1209 нс             |
| 6.060 нс  | от 5,878 нс до 6,242 нс               |
| 9,990 нс  | от 9.690 нс до 10,290 нс              |
| 10,00 нс  | от 9,7 нс до 10,3 нс                  |
| 50.00 нс  | от 48,5 нс до 51,5 нс                 |
| 99.90 нс  | от 96,903 нс до 102,897 нс            |
| 100 нс    | от 97 нс до 103 нс                    |
| 500 нс    | от 485 нс до 515 нс                   |
| 1 мкс     | от 970 нс до 1030 нс                  |
| 500 мкс   | от 485мкс до 515 мкс                  |
| 500 мс    | от 485 мс до 515 мс                   |

8.4.3.5.5 Результаты проверки считать положительными, если измеренный диапазон периода генератора не превысит значений, указанных в таблице 3.

8.4.3.6 Определение погрешности установки периода с ФАПЧ

8.4.3.6.1 Соединить генератор и частотомер в соответствии с рисунком 11:





8.4.3.6.2 Выбрать на генераторе экран [MODE/TRG] и установить значения в соответствии с рисунком 12:

| Per 6                             | .060ns No                                     | rmal                                 | <sup>off</sup> 2                 | MODIFY              |
|-----------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------|---------------------|
| Delay<br>DtyCyc<br>LeadE<br>TraiE | 0ps 01<br>50.00% Ar<br>2.00ns 50<br>=LeadE Se | ffset<br>mplit<br>OΩ into<br>eparate | +0.0mV<br>1.00V<br>50.0Ω<br>Out2 | 6.060 <sub>ns</sub> |
| MODE/TR                           | g outpui                                      | r 1   OU                             | DTPUT 2                          | PATTERN             |

8.4.3.6.3 Провести измерения, устанавливая значения генератора в соответствии с таблицей 4:

.

| ,        | Габлица 4   |                                 |
|----------|-------------|---------------------------------|
| Период   | Частота     | Допустимый диапазон изменения   |
| •        |             | частоты                         |
| 3,030нс  | 330,000 МГц | от 329,9670 МГц до 330,0330 МГц |
| 10.00 нс | 100 МГц     | от 99,990 МГц до 100,010 МГц    |
| 50.00 нс | 20 МГц      | от 19,9980 МГц до 20,0020 МГц   |
| 100 нс   | 10 ΜΓц      | от 9,9990 МГц до 10,0010 МГц    |
| 500 нс   | 2 МГц       | от 1,9998 МГц до 2,0002 МГц     |
| 1 мкс    | 1 МГц       | от 999,9 кГц до 1,0001 МГц      |
| 50 мкс   | 20 kГц      | от 9,998 кГц до 20,002 кГц      |
| 5 мс     | 200 Гц      | от 199,980 Гц до 200,020 Гц     |
| 500 мс   | 2 Гц        | от 1,9998 Гц до 2,0002 Гц       |
| 5 c      | 0.2 Ги      | от 0,19998 Гц до 0,20002 Гц     |

8.4.3.6.4 Результаты проверки считать положительными, если измеренный диапазон периода генератора не превысит значений, указанных в таблице 4.

8.4.4 Определение диапазона частот, диапазона установки периода и погрешности установки периода генератора 81112А

8.4.4.1 Подготовить генератор к работе, проведя следующие действия:

8.4.4.2 Выбрать режим [MODE/TRG]

8.4.4.3 Нажать клавиши: CONTINUOUS PULSES Single-Pulses at Out 1 плюс Single-Pulses at Out 2, если установлен второй канал, Pulse-Period:internal Osc.

8.4.4.4 Если установлен второй канал, выберите MORE [CONFIG] и установить значения в соответствии с рисунком 13:





8.4.4.1 Определение диапазона установки периода (ФАПЧ ВЫКЛ)

8.4.4.4.2 Соединить генератор и частотомер в соответствии с рисунком 14:





8.4.4.3 На генераторе нажать клавишу MORE и установите выход 1 и выход 2 в соответствии с рисунками 15 и 16:

| Per                               | 3.030ns Normal                                  | off 2           | MODIFY        |
|-----------------------------------|-------------------------------------------------|-----------------|---------------|
| Delay<br>DtyCyc<br>LeadE<br>TraiF | 0ps Offset<br>50.00% Amplit<br>0.80ns<br>=LeadE | +0.0mV<br>1.00V | 3.03 <u>0</u> |
| MODE/T                            | RG OUTPUT 1                                     | OUTPUT 2        | PATTERN       |

Рисунок 15

| CONTINUOUS PULSES                                                            | MODIFY                          |
|------------------------------------------------------------------------------|---------------------------------|
| Single-Pulses at Out1<br>Single-Pulses at Out2<br>Pulse-Period: internal PLL | int. OSC<br>*int. PLL<br>CLK-IN |
| MODE/TRG TIMING LEVELS                                                       | PATTERN                         |

Рисунок 16

Замечание: Если вы поверяете оба канала, необходимо сконфигурировать оба канала и поочередно отключать канал, который не поверяется.

8.4.4.4 Установить на частотомере следующие значения:

FUNCTION Period A / Freq C

INPUT A 50 Om

SENSE On

8.4.4.4.5 Устанавливать на генераторе значения в соответствии с таблицей 5: Таблица 5

| Период   | Допустимый диапазон изменения перио- |
|----------|--------------------------------------|
| -        | да                                   |
|          | без самокалибровки                   |
| 3,030 нс | от 2,9391 нс до 3,1209 нс            |
| 6,060 нс | от 5,878 нс до 6,242 нс              |
| 10,00 нс | от 9,7 нс до 10,3 нс                 |
| 50,00 нс | от 48,5 нс до 51,5 нс                |
| 99,90 нс | от 96,903 нс до 102,897 нс           |
| 100 нс   | от 97 нс до 103 нс                   |
| 500 нс   | от 485 нс до 515 нс                  |
| 1 мкс    | от 970 нс до 1030 нс                 |
| 500 мкс  | от 485мкс до 515 мкс                 |
| 500 мс   | от 485 мс до 515 мс                  |
|          |                                      |

8.4.4.6 Результаты проверки считать положительными, если измеренный диапазон периода генератора не превысит значений, указанных в таблице

8.4.4.5 Определение погрешности установки периода с ФАПЧ

8.4.4.5.1 Соединить генератор и частотомер в соответствии с рисунком 17:



Рисунок 17

8.4.4.5.2 Выбрать на генераторе экран [MODE/TRG] и установить значения в соответствии с рисунком 18:

| Per             | 3.030ns               | Normal           | ON<br>OFF | 1            | C  | MODIFY |
|-----------------|-----------------------|------------------|-----------|--------------|----|--------|
| Delay<br>DtvCvc | 0 <b>ps</b><br>50.00% | Offset<br>Amplit | +0        | . 0mV<br>)0V | 3. | .030   |
| LeadE<br>TraiE  | 0.80ns<br>=LeadE      | -                |           |              |    | ns     |
| MODE/T          | RGOUTI                | PUT 1            | OUTPU     | Г 2          | P  | ATTERN |

Рисунок 18

8.4.4.5.3 Провести измерения. устанавливая значения генератора в соответствии с таблицей 6: Таблица б

| Тиолици о |             |                                 |
|-----------|-------------|---------------------------------|
| Период    | Частота     | Допустимый диапазон изменения   |
| •         |             | частоты                         |
| 3,030 нс  | 330,000 МГц | от 329,9670 МГц до 330,0330 МГц |
| 10,00 нс  | 100 МГц     | от 99,990 МГц до 100,010 МГц    |
| 50,00 нс  | 20 МГц      | от 19,9980 МГц до 20,0020 МГц   |
| 100 нс    | 10 МГц      | от 9,9990 МГц до 10,0010 МГц    |
| 500 нс    | 2 МГц       | от 1,9998 МГц до 2,0002 МГц     |
| 1 мкс     | 1 МГц       | от 999,9 кГц до 1,0001 МГц      |
| 50 мкс    | 20 kГц      | от 9,998 кГц до 20,002 кГц      |
| 5 мс      | 200 Гц      | от 199,980 Гц до 200,020 Гц     |
| 500 мс    | 2 Гц        | от 1,9998 Гц до 2,0002 Гц       |
| 5 c       | 0,2 Гц      | от 0,19998 Гц до 0,20002 Гц     |

8.4.4.5.4 Результаты проверки считать положительными, если измеренный диапазон периода генератора не превысит значений, указанных в таблице 6.

8.5 Определение длительности импульса и погрешности длительности импульса

8.5.1 Определение длительности импульса и погрешности длительности импульса генератора 81111А

8.5.1.1 Соединить генератор с осциллографом в соответствии с рисунком 19:





8.5.1.2 На генераторе нажать клавишу MORE и установить значения выходного сигнала генератора [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 20 и 21:

| Per                              | 200 ns Normal ON 1 CMODIFY                                                                                       |
|----------------------------------|------------------------------------------------------------------------------------------------------------------|
| Delay<br>Width<br>LeadE<br>TraiE | Ops Offset   +0.0mV   100.0mV     100.0ns   Amplit   1.00V   1.00V     2.00ns   50Ω into   50.0Ω   ns     =LeadE |
| MODE/TH                          | RG OUTPUT 1 OUTPUT 2 PATTERN                                                                                     |
|                                  | Рисунок 20                                                                                                       |
| Per                              | 200 ns Normal OFF 2 CMODIFY                                                                                      |
| Delay                            | <u>Ops</u> Offset +0.0mV 3 030                                                                                   |
| Width                            | 3.030ns Amplit 1.00V                                                                                             |
| LeadE                            | 2.00ns 50 $\Omega$ into 50.0 $\Omega$ ns                                                                         |
| TraiE                            | =LeadE_Separate Out2                                                                                             |
| MODE/TF                          | G OUTPUT 1 OUTPUT 2 PATTERN                                                                                      |

Рисунок 21

8.5.1.3 Установить на осциллографе следующие параметры:

8.5.1.3.1 AUTOSCALE

2

8.5.1.3.2 Выбрать Display Menu и установить число усреднений равным 32.

8.5.1.3.3 Выбрать delta V меню и включить маркер напряжения On

8.5.1.3.4 Установить уровени 50%-50% и нажать клавишу AUTO LEVEL SET

8.5.1.3.5 Выбрать delta t Menu и включить маркер времени On

8.5.1.3.6 Установить START ON EDGE = POS 1 и STOP ON EDGE = NEG1

8.5.1.3.7 Установить время развертки равное 1 нс/дел

8.5.1.3.8 Изменить длительность импульса канал 1 генератора на 3.03 нс

8.5.1.3.9 Установить отображение импульса по центру дисплея осциллографа

8.5.1.4 Нажать клавишу PRECISE EDGE FIND для каждого нового значения длительности импульса из таблицы 7:

Таблица 7

| таолица /       |        |              |                                |
|-----------------|--------|--------------|--------------------------------|
| Время развертки | Период | Длительность | Допустимый диапазон длительно- |
| осциллографа    | -      |              | сти установки импульса         |
|                 |        |              | ļ                              |

13

| 1 нс/дел   | 200 нс | 1,515 нс | от 1,22455 нс до 1,80545нс |
|------------|--------|----------|----------------------------|
| 1 нс/дел   | 200 нс | 6,060 нс | от 5,528 нс до 6,492 нс    |
| 2 нс/дел   | 200 нс | 10,00 нс | от 9,450 нс до 10,55 нс    |
| 10 нс/дел  | 200 нс | 50,00 нс | от 48,25 нс до 51,75 нс    |
| 20 нс/дел  | 1 мкс  | 100,0 нс | от 484,75 не до 515,25 не  |
| 100 нс/дел | 1 мкс  | 500,0 нс |                            |

8.5.1.5 Результаты проверки считать положительными, если измеренный диапазон длительности установки импульса генератора не превысит значений, указанных в таблице 7.

8.5.1.6 Соединить генератор с частотомером в соответствии с рисунком 22:



#### Рисунок 22

8.5.1.7 Установить на частотомере следующий режим работы, нажимая клавиши:

| TI A→ B                      |
|------------------------------|
| On                           |
| 50 Ω                         |
| On                           |
| 50 $\Omega$ , negative slope |
|                              |

8.5.1.8 Првести измерения, устанавливая значения на генераторе в соответствии с таблицей 8: Таблица 8

| Период  | Длительность | Допустимый диапазон длительности |
|---------|--------------|----------------------------------|
| •       |              | установки импульса               |
| 100 мкс | 50 мкс       | от 48,5 мкс до 51,5 мкс          |
| 10 мс   | 5 мс         | от 4,85 мс до 5,15 мс            |
| 999 мс  | 500мс        | от 485 мс до 515 мс              |

8.5.1.9 Результаты проверки считать положительными, если измеренный диапазон длительности установки импульса генератора не превысит значений, указанных в таблице 8.

8.5.2 Определение длительности импульса и погрешности длительности импульса генератора 81112А

8.5.2.1 Соединить генератор с осциллографом в соответствии с рисунком 23:



Аттенюаторы

Рисунок 23

8.5.2.2 На генераторе нажать клавишу MORE и установить значения выходного сигнала генератора [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 24 и 25:



| Per     | 200 ns Normal  | off 2                   | MODIFY  |
|---------|----------------|-------------------------|---------|
| Delay   | Ops Offset     | <b>+</b> 0.0 <b>m</b> V | 1 515   |
| Width   | 1.515ns Amplit | 1.00V                   |         |
| LeadE   | 0.80ns         |                         | ns      |
| TraiE   | =LeadE         |                         |         |
| MODE/TI | RG OUTPUT 1    | OUTPUT 2                | PATTERN |

Рисунок 25

8.5.2.3 Установить на осциллографе следующие параметры:

8.5.2.3.1 AUTOSCALE

8.5.2.3.2 Выбрать Display Menu и установить число усреднений равным 32.

8.5.2.3.3 Выбрать delta V меню и включить маркер напряжения On

8.5.2.3.4 Установить уровени 50%-50% и нажать клавишу AUTO LEVEL SET

8.5.2.3.5 Выбрать delta t Menu и включить маркер времени On

8.5.2.3.6 Установить START ON EDGE = POS 1 и STOP ON EDGE = NEG1

8.5.2.3.7 Установить время развертки равное 1 нс/дел

8.5.2.3.8 Изменить длительность импульса канал 1 генератора на 1.515 нс

8.5.2.3.9 Установить отображение импульса по центру дисплея осциллографа

8.5.2.3.10 Нажать клавишу PRECISE EDGE FIND для каждого нового значения длительности импульса из таблицы 9:

| Время развертки | Период | Длительность | Допустимый диапазон длительности<br>установки импульса |
|-----------------|--------|--------------|--------------------------------------------------------|
| 1 нс/дел        | 200 нс | 1,515 нс     | от 1,22455 нс до 1.80545 нс                            |
| 1 нс/дел        | 200 нс | 6,060 нс     | от 5,528 нс до 6.492 нс                                |
| 2 нс/дел        | 200 нс | 10,00 нс     | от 9.450 нс до 10.55 нс                                |
| 10 нс/дел       | 200 нс | 50,00 нс     | от 48,25 нс до 51,75 нс                                |
| 20 нс/дел       | 1 мкс  | 100,0 нс     | от 96,75 нс до 103,25 нс                               |
| 100 нс/дел      | 1 мкс  | 500,0 нс     | от 484,75 нс до 515.25 нс                              |

Таблица 9

8.5.2.4 Результаты проверки считать положительными, если измеренный диапазон длительности установки импульса генератора не превысит значений, указанных в таблице 9.

8.5.2.5 Соединить генератор с частотомером в соответствии с рисунком 26:



## Рисунок 26

8.5.2.6 Установить на частотомере следующий режим работы, нажимая клавиши:

| FUNCTION | $\Pi A \rightarrow D$ |  |
|----------|-----------------------|--|
| SENSE    | On                    |  |
| INPUT A  | 50 Ω                  |  |
| COM A    | On                    |  |
|          |                       |  |

INPUT B  $50 \Omega$ , negative slope

8.5.2.7 Првести измерения, устанавливая значения на генераторе в соответствии с таблицей 10:

Таблица 10

÷

| Период           | Длительность   | Допустимый диапазон длительности установки                               |
|------------------|----------------|--------------------------------------------------------------------------|
|                  |                | импульса                                                                 |
| 100 мкс<br>10 мс | 50 мкс<br>5 мс | от 48,5 мкс до 51,5 мкс<br>от 4,85 мс до 5,15 мс<br>от 485 мс до 5,15 мс |
| 9999 MC          | JUUMC          | 01 405 MC 40 515 MC                                                      |

8.5.2.8 Результаты проверки считать положительными, если измеренный диапазон длительности установки импульса генератора не превысит значений, указанных в таблице 10.

8.5.3 Определение длительности импульса и погрешности длительности импульса генератора 81131А

8.5.3.1 Соединить генератор с осциллографом в соответствии с рисунком 27:



Рисунок 27

8.5.3.2 На генераторе нажать клавишу MORE и установить значения выходного сигнала генератора [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 28 и 29:

16

| Per 20                         | 00 ns                                        | ON<br>OFF                   | 1                             |                                       | DIFY       |
|--------------------------------|----------------------------------------------|-----------------------------|-------------------------------|---------------------------------------|------------|
| elay                           | 0ps Offs                                     | et +0                       | ). 0mV                        |                                       |            |
| Vidth 10                       | 0.0ns Ampl                                   | it 1.                       | 00V                           | 100                                   |            |
| LeadE 0                        | .80ns                                        |                             |                               | TOO                                   | · <u> </u> |
| [raiE =]                       | LeadE                                        |                             |                               | ns                                    |            |
| MODE/TRG                       | OUTPUT 1                                     | OUTPU                       | JT 2                          | PATT                                  | ERN        |
|                                |                                              |                             |                               |                                       |            |
|                                | P                                            | исунок 2                    | 8                             |                                       |            |
| Per                            | P<br>200 ns                                  | исунок 2                    | 8<br>OFF<br>OFF               | 2 ℃                                   | MODIF      |
| Per<br>Delay                   | Pr<br>200 ns<br>Ops C                        | исунок 2<br>Dffset          | 8<br>OFF<br>OFF<br>+0.        | 2 C                                   | MODIF      |
| Per<br>Delay<br>Width          | P1<br>200 ns<br>0ps C<br>1.250ns A           | исунок2<br>Offset<br>Amplit | 8<br>OFF<br>OFF<br>+0.<br>1.0 | 2 C<br><sup>0mv</sup> <sub>ov</sub> 1 | MODIF      |
| Per<br>Delay<br>Width<br>LeadE | P1<br>200 ns<br>0ps C<br>1.250ns A<br>0.80ns | Dffset                      | 8<br>OFF<br>+0.<br>1.0        | 2<br><sup>0mv</sup> <sub>0v</sub> 1   | MODIF      |

Рисунок 29

8.5.3.3 Установить на осциллографе следующие параметры:

8.5.3.3.1 AUTOSCALE

8.5.3.3.2 Выбрать Display Menu и установить число усреднений равным 32.

8.5.3.3.3 Выбрать delta V меню и включить маркер напряжения On

8.5.3.3.4 Установить уровени 50%-50% и нажать клавишу AUTO LEVEL SET

8.5.3.3.5 Выбрать delta t Menu и включить маркер времени On

8.5.3.3.6 Установить START ON EDGE = POS 1 и STOP ON EDGE = NEG1

8.5.3.3.7 Установить время развертки равное 1 нс/дел

8.5.3.3.8 Изменить длительность импульса канал 1 генератора на 1,250 нс

8.5.3.3.9 Установить отображение импульса по центру дисплея осциллографа

8.5.3.3.10 Нажать клавишу PRECISE EDGE FIND и измерить значения длительности импульса осциллографом для каждого нового значения длительности импульса из таблицы 11:

| Таблиц                          | a 11   |                          |                                                        |
|---------------------------------|--------|--------------------------|--------------------------------------------------------|
| Время развертки<br>осциллографа | Период | Длительность<br>импульса | Допустимый диапазон длительности<br>установки импульса |
| 1 нс/леп                        | 200 нс | 1.250 нс                 | От 1,049875 нс до 1,450125 нс                          |
| <u>2 нс/лед</u>                 | 200 нс | 10,00 нс                 | От 9,799 нс до 10,201 нс                               |
| 10 нс/лел                       | 200 нс | 50,00 нс                 | От 49,795 нс до 50.205 нс                              |
| 20 нс/дел                       | 1 мкс  | 100.0 нс                 | От 99,790 нс до 100,210 нс                             |
| 100 нс/дел                      | 1 мкс  | 500,0 нс                 | От 499,750 нс до 500,250 нс                            |

8.5.3.4 Соединить генератор с частотомером в соответствии с рисунком 30:



#### Рисунок 30

- 8.5.3.5 Установить на частотомере следующий режим работы, нажимая клавиши:
- FUNCTION PULSE WIDTH A

INPUT A  $50 \Omega$ 

8.5.3.6 Измерить значения длительности импульса частотомером для каждого нового значения длительности импульса из таблицы 12:

Таблица 12

| Период   | Длительность | Допустимый диапазон длительности |
|----------|--------------|----------------------------------|
| -        | импульса     | установки импульса               |
| 5,882 мс | 1 мс         | От 0,9997 мс до 1,0003 мс        |
| 5,882 мс | 5 мс         | От 4,9993 мс до 5,0007 мс        |

8.5.3.7 Результаты проверки считать положительными, если измеренный диапазон длительности импульса генератора не превысит значений, указанных в таблицах 11 и 12.

8.5.4 Определение длительности импульса и погрешности длительности импульса генератора 81132А

8.5.4.1 Соединить генератор с осциллографом в соответствии с рисунком 31:



Рисунок 31

8.5.4.2 На генераторе нажать клавишу MORE и установить значения выходного сигнала генератора [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 32 и 33:

| Per            | 200 ns             |                 | on 1            | MODIFY        |
|----------------|--------------------|-----------------|-----------------|---------------|
| Delay<br>Width | 0ps 0<br>100.0ns A | offset<br>mplit | +0.0mV<br>1.00V | 100. <u>0</u> |
| MODE/T         | RG OUTPU           | T 1             | OUTPUT 2        | PATTERN       |



| Per            | 200 ns                     | OFF 2          | CMODIFY     |
|----------------|----------------------------|----------------|-------------|
| Delay<br>Width | 0ps Offset<br>750ps Amplit | +0.0m<br>1.00V | 75 <u>0</u> |
|                | Separa                     | ate Out2_      |             |
| MODE/T         | RG OUTPUT 1                | OUTPUT 2       | PATTERN     |

8.5.4.3 Установить на осциллографе следующие параметры:

8.5.4.3.1 AUTOSCALE

8.5.4.3.2 Выбрать Display Menu и установить число усреднений равным 32.

8.5.4.3.3 Выбрать delta V меню и включить маркер напряжения On

8.5.4.3.4 Установить уровени 50%-50% и нажать клавишу AUTO LEVEL SET

8.5.4.3.5 Выбрать delta t Menu и включить маркер времени On

8.5.4.3.6 Установить START ON EDGE = POS 1 и STOP ON EDGE = NEG1

8.5.4.3.7 Установить время развертки равное 1 нс/дел

8.5.4.3.8 Изменить длительность импульса канал 1 генератора на 750 нс

8.5.4.3.9 Установить отображение импульса по центру дисплея осциллографа

8.5.4.3.10 Нажать клавишу PRECISE EDGE FIND и измерить значения длительности импульса

осциллографом для каждого нового значения длительности импульса из таблицы 13: Таблица 13

| Iuc             | лица то |                                         |                              |
|-----------------|---------|-----------------------------------------|------------------------------|
| Время раз-      | Период  | Длительность Допустимый диапазон длите. |                              |
| вертки осцил-   |         | импульса                                | установки периода            |
| лографа         |         |                                         |                              |
| <u>1 нс/лел</u> | 200 нс  | 750 пс                                  | От 549,925 пс до 950,075 пс  |
| 2 нс/леп        | 200 нс  | 10.00 нс                                | От 9,799 нс до 10,201 нс     |
| 10 нс/дел       | 200 нс  | 50.00 нс                                | От 49,795 нс до 50,205 нс    |
| 10 не/дел       | 1 vo    | 100.0 нс                                | От 99 790 нс ло 100.210 нс   |
| 20 нс/дел       | і мс    | 100,0 HC                                |                              |
| 100 нс/дел      | 1 мс    | 500,0 нс                                | От 499, /50 не до 500.250 не |

8.5.4.4 Соединить генератор с частотомером в соответствии с рисунком 34:



## Рисунок 34

8.5.4.5 Установить на частотомере следующий режим работы, нажимая клавиши: FUNCTION PULSE WIDTH A

INPUT A  $50 \Omega$ 

8.5.4.6 Измерить значения длительности импульса частотомером для каждого нового значения длительности импульса из таблицы 14:

|          | Таблица 14   |                                  |
|----------|--------------|----------------------------------|
| Период   | Длительность | Допустимый диапазон длительности |
| 1        | импульса     | установки периода импульса       |
| 5.882 мс | 1 MC         | От 0,9997 мс до 1,0003 мс        |
| 5.882 мс | 5 мс         | От 4,9993 мс до 5,0007 мс        |

8.5.4.7 Результаты проверки считать положительными, если измеренный диапазон длительности импульса генератора не превысит значений, указанных в таблицах 13 и 14.

8.6 Определение времени задержки импульса и погрешности времени задержки импульса

- 8.6.1 Определение времени задержки импульса и погрешности времени задержки импульса 81111А
- 8.6.1.1 Собрать схему в соответствии с рисунком 35:



Рисунок 35

8.6.1.2 Установить на генераторе импульсов 8110А следующие характеристики выходного сигнала:

| Period    | 1 мкс  |
|-----------|--------|
| Width     | 100 нс |
| Amplitude | 1 B    |
| Offset    | +1.0 B |
| Output    | Enable |

.

8.6.1.3 Выбрать экран [MODE/TRG] и установить характеристики выходного сигнала генератора в соответствии с рисунком 36:

| Single-Pulses at Out1<br>Single-Pulses at Out2 | Continous          |
|------------------------------------------------|--------------------|
|                                                | *Triggered         |
| Trg'd by: EXT-IN                               | Gated<br>Ext-Width |
| MODE/TRG TIMING LEVELS                         | PATTERN            |

Рисунок 36

8.6.1.4 На генераторе нажать клавишу MORE и установить значения [**TRIG-LEV**] в соответствии с рисунком 37:

| EXT-IN: Threshold<br>CLK-IN: Threshold | +1.0V 50Ω<br>+1.0V 50Ω | MODIFY                         |  |  |  |
|----------------------------------------|------------------------|--------------------------------|--|--|--|
|                                        |                        | Set TTL<br>Set ECL<br>*Voltage |  |  |  |
| STROBE-OUT : TTL                       | MEMCARD                | CONFIG                         |  |  |  |
| Рисунок 37                             |                        |                                |  |  |  |

8.6.1.5 На генераторе установить выходы [OUTPUT 1] и [OUTPUT 2]

21

в соответствии с рисунками 38 и 39:

| Per                              |                                  | Normal                       | ON               | 1                  | MODIFY         |
|----------------------------------|----------------------------------|------------------------------|------------------|--------------------|----------------|
| Delay<br>Width<br>LeadE<br>TraiE | 0ps<br>100ns<br>2.00ns<br>=LeadE | Offset<br>Amplit<br>50Ω into | +0<br>1.(<br>50. | . 0mV<br>00V<br>0Ω | $\frac{0}{ps}$ |
| MODE/T                           | RG OUTE                          | PUT 1 OU                     | TPU              | т 2                | PATTERN        |

Рисунок 38

| Per    |         | Normal          | off   | 2   | MODIFY   |
|--------|---------|-----------------|-------|-----|----------|
| Delay  | 0ps     | Offset          | +0.   | 0mV | Ο        |
| Width  | 100ns   | Amplit          | 1.0   | 0V  | <u> </u> |
| LeadE  | 2.00ns  | $50\Omega$ into | 50.   | 0Ω  | ps       |
| TraiE  | =LeadE  | Separate        | Out   | 2   |          |
| MODE/T | RG OUTI | PUT 1 0         | UTPUI | 2   | PATTERN  |

Рисунок 39

8.6.1.6 Установить следующие параметры осциллографа 54121Т:

8.6.1.6.1 AUTOSCALE

8.6.1.6.2 Время развертки TIME/DIV = 10 нс/дел

8.6.1.6.3 Положительные пики отображаемых сигналов по центру экрана осциллографа

8.6.1.6.4 Выбрать Display menu и установить экранную функцию single, число усреднений равное 32

8.6.1.6.5 Выбрать Delta V menu, включить маркер напряжения и назначте маркеру 1 канал 3 и маркеру 2 канал 4

8.6.1.6.6 Установить опорный уровень 50% - 50% и нажать AUTO LEVEL SET

8.6.1.6.7 Выбрать Delta t menu и включите маркер времени

8.6.1.6.8 Установить START ON EDGE= POS1 и STOP ON EDGE= POS 1

8.6.1.6.9 Нажать клавишу PRECISE EDGE FIND

8.6.1.7 Провести измерения, устанавливая значения задержки генератора в соответствии с таблицей 15:

Таблица 15

| Тиолици    | 10             |                             |
|------------|----------------|-----------------------------|
| Время      | Время задержки | Допустимый диапазон времени |
| развертки  | импульса       | задержки импульса           |
| 10 нс/лел  | 5.000 нс       | от 4,35 нс до 5,65 нс       |
| 20 нс/леп  | 10.00 нс       | от 9,200 нс до 10,80 нс     |
|            | 50,00 нс       | от 48.00 нс до 52.00 нс     |
|            |                | от 96 50 нс ло 103.50 нс    |
| 50 нс/дел  | 100,0 HC       | or 484 50 µc 10 515 50 µc   |
| 200 нс/дел | 500,0 нс       | ОТ 464, 50 нс до 515, 50 нс |

8.6.1.8 Соединить генератор с частотомером в соответствии с рисунком 40:





| 8.6.1.9 Установить  | генератор в режим Cont | inuous-Pulses на экран | e MODE/TRG |
|---------------------|------------------------|------------------------|------------|
| 8.6.1.10 Установити | ь следующие параметры  | частотомера:           |            |

| FUNCTION TI   | $A \rightarrow B$ |
|---------------|-------------------|
| SENSE         | On                |
| INPUT A       | 50 Ω              |
| INPUT B       | 50 Ω              |
| 86111 Измерит | г врема залержк   |

8.6.1.11 Измерить время задержки импульса генератора в соответствии с таблицей 16: Таблица 16

| Период  | Время задержки | Допустимый диапазон времени за- |
|---------|----------------|---------------------------------|
|         | импульса       | держки импульса                 |
| 100 мкс | 50 мкс         | 48.5 мкс до 51.5 мкс            |
| 10 мс   | 5 мс           | 4.85 мс до 5.15мс               |
| 999 мс  | 500мс          | 485 мс до 515 мс                |

8.6.1.12 Результаты проверки считать положительными, если измеренный диапазон задержки импульса генератора не превысит значений, указанных в таблицах 15 и 16.

8.6.2 Определение времени задержки импульса и погрешности времени задержки импульса 81112A

8.6.2.1 Собрать схему в соответствии с рисунком 41:



Рисунок 41

8.6.2.2 Установить на генераторе импульсов 8110А следующие характеристики выходного сигнала:

| Period    | 1 мкс  |
|-----------|--------|
| Width     | 100 нс |
| Amplitude | 1 B    |
| Offset    | +1.0 B |
| Output    | Enable |

22

8.6.2.3 Выбрать экран [**MODE/TRG**] и установить характеристики выходного сигнала генератора в соответствии с рисунком 42:

| TRIGGERED | PULSES                         |          |              | MODIFY                  |
|-----------|--------------------------------|----------|--------------|-------------------------|
|           | Single-Pulses<br>Single-Pulses | at<br>at | Out1<br>Out2 | Continous<br>*Triggered |
| Trg'd by: | EXT-IN                         |          |              | Gated<br>Ext-Width      |
| MODE/TRG  | TIMING                         | LEV      | ELS          | PATTERN                 |

Рисунок 42

8.6.2.4 На генераторе нажать клавишу MORE и установить значения [TRIG-LEV] в соответствии с рисунком 43:



Рисунок 43

8.6.2.5 На генераторе установить выходы [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 44 и 45:

| -                | Per                             | Normal                                         | ON<br>OFF  | 1          | MODIFY  |
|------------------|---------------------------------|------------------------------------------------|------------|------------|---------|
| C<br>W<br>I<br>I | elay<br>Midth<br>LeadE<br>TraiE | 0ps Offset<br>100ns Amplit<br>0.80ns<br>=LeadE | +0.<br>1.( | 0mV<br>)0V | 0<br>ps |
| Ī                | MODE/T                          | RG OUTPUT 1                                    | OUTPU'     | r 2        | PATTERN |

| Рисунок | 44 |
|---------|----|
|---------|----|

| Per                     | Normal (                             | DFF 2 MODIFY                               |
|-------------------------|--------------------------------------|--------------------------------------------|
| Delay<br>Width<br>LeadE | 0ps Offset<br>100ns Amplit<br>0.80ns | $\frac{+0.0mV}{1.00V} \qquad \frac{0}{ps}$ |
| MODE/I                  | RG OUTPUT 1 OU                       | TPUT 2 PATTERN                             |

Рисунок 45

8.6.2.6 Установить следующие параметры осциллографа 54121Т:

8.6.2.6.1 AUTOSCALE

8.6.2.6.2 Время развертки TIME/DIV = 10 нс/дел

8.6.2.6.3 Положительные пики отображаемых сигналов по центру экрана осциллографа

8.6.2.6.4 Выбрать Display menu и установите экранную функцию single, число усреднений равное 32

8.6.2.6.5 Выберать Delta V menu, включите марке напряжения и назначте маркеру 1 канал 3 и маркеру 2 канал 4

8.6.2.6.6 Установить опорный уровень 50% - 50% и нажмите AUTO LEVEL SET

8.6.2.6.7 Выбрать Delta t menu и включите маркер времени

8.6.2.6.8 Установить START ON EDGE= POS1 и STOP ON EDGE= POS 1

8.6.2.6.9 Нажать клавишу PRECISE EDGE FIND

8.6.2.7 Провести измерения, устанавливая значения задержки генератора в соответствии с таблицей 17:

#### Таблица 17

| Тиеттіца       |           |                                 |
|----------------|-----------|---------------------------------|
| Время разверт- | Время за- | Допустимый диапазон времени за- |
| ки             | держки    | держки импульса                 |
|                | импульса  |                                 |
| 10 нс/дел      | 5,000 нс  | от 4,35 нс до 5,65 нс           |
| 20 нс/дел      | 10,00 нс  | от 9,200 нс до 10,80 нс         |
| 20 нс/дел      | 50,00 нс  | от 48,00 нс до 52,00 нс         |
| 50 нс/дел      | 100.0 нс  | от 96,50 нс до 103,50 нс        |
| 200 нс/дел     | 500,0 нс  | от 484,50 нс до 515,50 нс       |

8.6.2.8 Соединить генератор с частотомером в соответствии с рисунком 46:





8.6.2.9 Установить генератор в режим Continuous-Pulses на экране MODE/TRG

8.6.2.10 Установить следующие параметры частотомера:

| FUNCTION TI | $A \rightarrow B$ |
|-------------|-------------------|
| SENSE       | On                |
| INPUT A     | 50 Ω              |
| INPUT B     | 50 Ω              |
|             |                   |

8.6.2.11 Измерить время задержки импульса генератора в соответствии с таблицей 18: Таблица 18

| •       |                |                             |
|---------|----------------|-----------------------------|
| Период  | Время задержки | Допустимый диапазон времени |
|         | импульса       | задержки импульса           |
| 100 мкс | 50 мкс         | 48.5 мкс до 51.5 мкс        |
| 10 мс   | 5 мс           | 4.85 мс до 5.15мс           |
| 999 мс  | 500мс          | 485 мс до 515 мс            |

8.6.2.12 Результаты проверки считать положительными, если измеренный диапазон задержки импульса генератора не превысит значений, указанных в таблицах 17 и 18.

8.6.3 Определение времени задержки импульса и погрешности времени задержки импульса







8.6.3.2 На генераторе установить выходы [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 48 и 49:

| Per                                        | 1.000us                                                       | OFF 1                       | MODIFY             |
|--------------------------------------------|---------------------------------------------------------------|-----------------------------|--------------------|
| Delay<br>Width<br>LeadE<br>TraiE<br>MODE/T | 0ps Offset<br>100ns Amplit<br>0.80ns<br>=LeadE<br>RG OUTPUT 1 | +0.0mV<br>1.00V<br>OUTPUT 2 | 0<br>ps<br>PATTERN |
|                                            | Рису                                                          | нок 48                      |                    |
| Per                                        | 1.000us                                                       | ON OFF 2                    | MODIFY             |
| Delay<br>Width<br>LeadE<br>TraiE           | 0ps Offset<br>100ns Amplit<br>0.80ns<br>=LeadE_Separa         | +0.0mV<br>1.00V<br>te Out2  | 0<br>ps            |
| MODE/T                                     | RG OUTPUT 1                                                   | OUTPUT 2                    | PATTERN            |
|                                            | <br>D                                                         |                             |                    |

8.6.3.3 Установить следующие параметры осциллографа 54121Т:

8.6.3.3.1 AUTOSCALE

8.6.3.3.2 Время развертки ТІМЕ/DIV = 1 нс/дел

8.6.3.3.3 Установить положительные пики отображаемых сигналов по центру экрана осциллографа

8.6.3.3.4 Выбрать Display menu и установите экранную функцию single, число усреднений равное 16

8.6.3.3.5 Выбрать Delta V menu, включить маркер напряжения и назначьте маркеру 1 канал 3

8.6.3.3.6 Установить опорный уровень 50% - 50% и нажать AUTO LEVEL SET

8.6.3.3.7 Выбрать Delta t menu и включите маркер времени

8.6.3.3.8 Установить START ON EDGE= POS1 и STOP ON EDGE= POS 1

8.6.3.3.9 Нажать клавишу PRECISE EDGE FIND

8.6.3.4 Провести измерения, устанавливая значения задержки импульса генератора в соответствии с таблицей 19:

| Таблица      | 19        |                             |
|--------------|-----------|-----------------------------|
| Время        | Время за- | Допустимый диапазон времени |
| развертки    | держки    | задержки импульса           |
| осциллографа | импульса  |                             |
| 1 нс/дел     | 5,000 нс  | От 4,35 нс до 5,1005 нс     |
| 2 нс/дел     | 10,00 нс  | От 9,899 нс до 10,101 нс    |
| 10 нс/дел    | 50,00 нс  | От 49,895 нс до 50,105 нс   |
| 20 нс/дел    | 100,0 нс  | От 99,890 нс до 100,110 нс  |
| 100 нс/дел   | 500,0 нс  | От 499,850 не до 500,150 не |

8.6.3.5 Для каждого нового значения времени развертки осциллографа устанавливать значение задержки генератора, равным 0 пс, затем нажимать START ON EDGE= POS1 и PRECISE EDGE FIND и только затем нажимать STOP ON EDGE= POS 1.

8.6.3.6 Соединить генератор с частотомером в соответствии с рисунком 50:



Рисунок 50

8.6.3.7 Установить следующие параметры частотомера:

| $A \rightarrow B$ |
|-------------------|
| On                |
| 50 Ω              |
| 50 Ω              |
|                   |

8.6.3.8 Измерить время задержки импульса генератора в соответствии с таблицей 20: Таблица 20

| ruomia, = · |            |                             |
|-------------|------------|-----------------------------|
| Период      | Время за-  | Допустимый диапазон времени |
| -           | держки им- | задержки импульса           |
|             | пульса     |                             |
| 5,882 мс    | 3,00 мс    | От 2,9996 мс до 3,0004 мс   |
|             |            |                             |

8.6.3.9 Повторить измерения для второго канала генератора, если он установлен.

8.6.3.10 Результаты проверки считать положительными, если измеренный диапазон времени задержки импульса генератора не превысит значений, указанных в таблицах 19 и 20.

8.6.4 Определение времени задержки импульса и погрешности времени задержки импульса 81132A

8.6.4.1 Собрать схему в соответствии с рисунком 51:





8.6.4.2 На генераторе установить выходы [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 52 и 53:



Рисунок 53

8.6.4.3 Установить следующие параметры осциллографа 54121Т:

8.6.4.3.1 AUTOSCALE

8.6.4.3.2 Время развертки ТІМЕ/DIV = 1 нс/дел

8.6.4.3.3 Установить положительные пики отображаемых сигналов по центру экрана осциллографа

8.6.4.3.4 Выбрать Display menu и установите экранную функцию single, число усреднений равное 16

8.6.4.3.5 Выбрать Delta V menu, включить маркер напряжения и назначьте маркеру 1 канал 3

8.6.4.3.6 Установить опорный уровень 50% - 50% и нажать AUTO LEVEL SET

8.6.4.3.7 Выбрать Delta t menu и включите маркер времени

8.6.4.3.8 Установить START ON EDGE= POS1 и STOP ON EDGE= POS 1

8.6.4.3.9 Нажать клавишу PRECISE EDGE FIND

8.6.4.4 Провести измерения, устанавливая значения задержки импульса генератора в соответствии с таблицей 21:

Таблица 21.

| Время        | Время за- | Допустимый диапазон времени |
|--------------|-----------|-----------------------------|
| развертки    | держки    | задержки импульса           |
| осциллографа | импульса  |                             |
| 1 нс/дел     | 5,000 нс  | От 4,35 нс до 5,1005 нс     |
| 2 нс/дел     | 10,00 нс  | От 9,899 нс до 10,101 нс    |
| 10 нс/дел    | 50,00 нс  | От 49,895 нс до 50,105 нс   |
| 20 нс/дел    | 100,0 нс  | От 99,890 нс до 100,110 нс  |
| 100 нс/дел   | 500,0 нс  | От 499,850 нс до 500,150 нс |

8.6.4.5 Для каждого нового значения времени развертки осциллографа устанавливать значение задержки генератора, равным 0 пс, затем нажимать START ON EDGE= POS1 и PRECISE EDGE FIND и только затем нажимать STOP ON EDGE= POS 1.

8.6.4.6 Соединить генератор с частотомером в соответствии с рисунком 54:



Рисунок 54

8.6.4.7 Установить следующие параметры частотомера:

| FUNCTION TI | $A \rightarrow B$ |
|-------------|-------------------|
| INPUT A     | 50 Ω              |
| INPUT B     | 50 Ω              |

8.6.4.8 Измерить время задержки импульса генератора в соответствии с таблицей 22: Таблица 22

| Период   | Время задержки | Допустимый диапазон времени |
|----------|----------------|-----------------------------|
| -        | импульса       | задержки импульса           |
| 5,882 мс | 3,00 мс        | От 2,9996 мс до 3,0004 мс   |

8.6.4.9 Повторить измерения для второго канала генератора, если он установлен.

8.6.4.10 Результаты проверки считать положительными, если измеренный диапазон времени задержки импульса генератора не превысит значений, указанных в таблицах 21 и 22.

8.7 Определение времени задержки парного импульса и погрешности времени задержки парного импульса

8.7.1 Определение времени задержки парного импульса и погрешности времени задержки парного импульса 81111А

8.7.1.1 Соединить генератор с осциллографом в соответствии с рисунком 55:



Аттенюаторы



8.7.1.2 Выбрать экран [MODE/TRG] на генераторе и установить характеристики выходов 1 и 2 в соответствии с рисунком 56:

| CONTINUOUS PULSES                              | MODIFY   |
|------------------------------------------------|----------|
| Double-Pulses at Out1<br>Double-Pulses at Out2 | Single   |
| Pulse-Period: internal Osc                     | * Double |
| MODE/TRG TIMING LEVELS                         | PATTERN  |

Рисунок 56

8.7.1.3 На генераторе установите характеристики [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 57 и 58:

| Per                          | 200.0ns                      | Normal                               | ON                | 1               | MODIFY      |
|------------------------------|------------------------------|--------------------------------------|-------------------|-----------------|-------------|
| <br>DblDel<br>Width<br>LeadE | 6.060ns<br>3.030ns<br>2.00ns | Offset<br>Amplit<br>50 $\Omega$ into | +0.<br>1.0<br>50. | 0mV<br>0V<br>0Ω | 6.060<br>ns |
| TraiE<br>MODE/T              | =LeadE<br>RG OUTE            | PUT 1 OU                             | TPU               | F 2             | PATTERN     |

Рисунок 57

| Per                               | 200.0ns                                | Normal                                          | <sup>ofi</sup> 2                 | MODIFY        |
|-----------------------------------|----------------------------------------|-------------------------------------------------|----------------------------------|---------------|
| DblDel<br>Width<br>LeadE<br>TraiE | 6.060ns<br>3.030ns<br>2.00ns<br>=LeadE | Offset<br>Amplit<br>$50\Omega$ into<br>Separate | +0.0mV<br>1.00V<br>50.0Ω<br>Out2 | 6.06 <u>0</u> |
| MODE/T                            | RG OUTE                                | OUT 1 OU                                        | TPUT 2                           | PATTERN       |

Рисунок 58

8.7.1.4 Установить следующие параметры осциллографа Agilent 54121Т:

29

- 8.7.1.4.1 Нажать клавишу AUTOSCALE
- 8.7.1.4.2 Установить отображаемый сигнал по центру экрана осциллографа
- 8.7.1.4.3 Установить время усреднения равное 32
- 8.7.1.4.4 Включить маркер напряжения
- 8.7.1.4.5 Установить начальный уровень = 50% -50% и нажмите AUTO LEVEL SET
- 8.7.1.4.6 Включить временной маркер
- 8.7.1.4.7 Установить START ON EDGE = POS1 и STOP ON EDGE = POS2

8.7.1.5 Провести измерения, нажимая клавишу PRECISE EDGE FIND для каждого значения задержки парного импульса в соответствии с таблицей 23:

Таблица 23

\*

| Время развертки Значение времени заде |                  | Допустимый диапазон времени                               |
|---------------------------------------|------------------|-----------------------------------------------------------|
| осциллографа                          | парного импульса | задержки парного импульса                                 |
|                                       |                  | 5 (28 6 202                                               |
| 2 нс/лел                              | 6,060 нс         | от 5,628 не до 6,592 не                                   |
| 2 110 201                             | 10.00            | $r = 0.550 \text{ m}_{\odot}$ = $10.45 \text{ m}_{\odot}$ |
| 2 нс/лел                              | 10,00 нс         | OT 9,550 HC DO HC                                         |
| 2 110/ 2011                           |                  | - 49 25 mg = 51 65 mg                                     |
| 10 ис/леп                             | 50.00 нс         | OT 48,55 HC _ DO _ 51,05 HC                               |
| Топедел                               | 00,00            | 06.05 102.15 110                                          |
| 20 110/1101                           | 100.0 нс         | от 96,85 нс до 103,15 нс                                  |
| 20 нс/дел                             | 100,0 110        |                                                           |

8.7.1.6 Соединить генератор и частотомер в соответствии с рисунком 59:



Рисунок 59

8.7.1.7 Установить следующие параметры частотомера:

| FUNCTION    | Period A            |
|-------------|---------------------|
| INPUT A     | 50 Ω                |
| SENSE       | On                  |
| (EXT ARM SE | ELECTa. Start (ST): |

b. Stop (SP)

8.7.1.8 Установить характеристики сигнала генератора в соответствии с рисунками 60, 61 и 62:

| TRIGGERED PULSES |                                                | MODIFY   |
|------------------|------------------------------------------------|----------|
|                  | Double-Pulses at Out1<br>Double-Pulses at Out2 | *MAN Key |
| Trg'd by:        | MANKey                                         | PLL      |
| MODE/TRG         | OUTPUT 1 OUTPUT 2                              | PATTERN  |

Рисунок 60

| Per                                |                    | Normal           | ON         | 1         | MODIFY        |
|------------------------------------|--------------------|------------------|------------|-----------|---------------|
| DblDel<br>Width                    | 500.0ms<br>20.00ns | Offset<br>Amplit | +0.<br>1.0 | 0mV<br>0V | 500. <u>0</u> |
| LeadE<br>TraiE                     | 2.00ns<br>=LeadE   | 50 $\Omega$ into | 50.0       | ΩC        | ms            |
| MODE/TRG OUTPUT 1 OUTPUT 2 PATTERN |                    |                  |            |           |               |

Рисунок 61

| Per                      |                              | Normal                       | OFF               | 2               | MODIFY        |
|--------------------------|------------------------------|------------------------------|-------------------|-----------------|---------------|
| DblDel<br>Width<br>LeadE | 100.0ns<br>20.00ns<br>2.00ns | Offset<br>Amplit<br>50Ω into | +0.<br>1.0<br>50. | 0mV<br>0V<br>0Ω | <b>100</b> .0 |
| TraiE<br>MODE/T          | =LeadE<br>'RG OUTP           | Separate                     | Out2              | 2               | PATTERN       |

Рисунок 62

8.7.1.9 Определить погрешность времени задержки парного импульса, устанавливая значения в соответствии с таблицей 24 и каждый раз нажимая клавишу MAN для новой установки:

| Таблица 24       |                             |  |  |
|------------------|-----------------------------|--|--|
| Значение времени | Допустимый диапазон времени |  |  |
| задержки парного | задержки парного импульса   |  |  |
| импульса         |                             |  |  |
| 500 мс           | от 485 мс до 515 мс         |  |  |
| 1 c              | от 970,00 мс до 1030,00 мс  |  |  |

8.7.1.10 Результаты проверки считать положительными, если измеренный диапазон задержки парного импульса генератора не превысит значений, указанных в таблицах 23 и 24.

8.7.2 Определение времени задержки парного импульса и погрешности времени задержки парного импульса 81112А

8.7.2.1 Соединить генератор с осциллографом в соответствии с рисунком 63:

Генератор





Аттенюаторы

## Рисунок 63

8.7.2.2 Выбрать экран [**MODE/TRG**] на генераторе и установить характеристики выходов 1 и 2 в соответствии с рисунком 64:



Рисунок 64

8.7.2.3 На генераторе установите характеристики [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 65 и 66:

| Per             | 200.0ns No               | rmal         | on 1            | MODIFY  |
|-----------------|--------------------------|--------------|-----------------|---------|
| DblDel<br>Width | 3.030ns Of<br>1.515ns Am | fset<br>plit | +0.0mV<br>1.00V | 3.030   |
| LeadE           | 0.80ns                   | _            |                 | ns      |
| TraiE           | =LeadE                   |              |                 |         |
| MODE/T          | RG .OUTPUT               | 1 01         | UTPUT 2         | PATTERN |

Рисунок 65

| Per                      | 200.0ns                      | Normal           | OFF        | 2         | CMODIFY       |
|--------------------------|------------------------------|------------------|------------|-----------|---------------|
| DblDel<br>Width<br>LeadE | 3.030ns<br>1.515ns<br>0.80ns | Offset<br>Amplit | +0.<br>1.0 | 0mV<br>00 | 3.03 <u>0</u> |
| MODE/T                   | RG OUTI                      | PUT 1            | OUTPUT     | r 2       | PATTERN       |

Рисунок 66

8.7.2.4 Установить следующие параметры осциллографа Agilent 54121T:

8.7.2.4.1 Нажать клавишу AUTOSCALE

8.7.2.4.2 Установить отображаемый сигнал по центру экрана осциллографа

8.7.2.4.3 Установить время усреднения равное 32

8.7.2.4.4 Включить маркер напряжения

8.7.2.4.5 Установить начальный уровень = 50% -50% и нажмите AUTO LEVEL SET

8.7.2.4.6 Включить временной маркер

8.7.2.4.7 Установить START ON EDGE = POS1 и STOP ON EDGE = POS2

8.7.2.5 Провести измерения, нажимая клавишу PRECISE EDGE FIND для каждого значения задержки парного импульса в соответствии с таблицей 25:

# Таблица 25

| i definique et  |                           |                             |
|-----------------|---------------------------|-----------------------------|
| Время развертки | Значение времени задержки | Допустимый диапазон времени |
| осциллографа    | парного импульса          | задержки парного импульса   |
| 2 нс/лел        | 3.030 нс                  | от 2,7891 нс до 3,2709 нс   |
| 2 нс/дел        | 10.00 нс                  | от 9,550 нс до 10.45 нс     |
|                 | 50.00 HC                  | от 48.35 нс до 51.65 нс     |
| то не/дел       | 100.0                     | or 96.85 us to 103.15 Hs    |
| 20 нс/дел       | 100,0 нс                  | 01 90,85 нс до 105,15 не    |

8.7.2.6 Соединить генератор и частотомер в соответствии с рисунком 67:



Рисунок 67

8.7.2.7 Установить следующие параметры частотомера:

FUNCTIONPeriod AINPUT A50 ΩSENSEOn(EXT ARM SELECTa. Start (ST):b. Stop (SP)

.

8.7.2.8 Установить характеристики сигнала генератора в соответствии с рисунками 68. 69 и 70:

| TRIGGERED | PULSES                       |              |              | C MC        | DIFY         |
|-----------|------------------------------|--------------|--------------|-------------|--------------|
|           | Double-Pulse<br>Double-Pulse | s at<br>s at | Out1<br>Out2 | *MAN<br>EXT | Key<br>INPUT |
| Trg'd by: | MANKey                       |              |              | PLL         |              |
| MODE/TRG  | OUTPUT 1                     | OUTP         | PUT 2        | PAT         | TERN         |

Рисунок 68

| Per             | No                        | rmal         | ON<br>OFF  | 1          | MODIFY  |
|-----------------|---------------------------|--------------|------------|------------|---------|
| DblDel<br>Width | 500.0ms Of:<br>20.00ns Am | fset<br>olit | +0.<br>1.0 | 0mV<br>00V | 500.0   |
| LeadE           | 0.80ns<br>=LeadE          | L            |            |            | ms      |
| MODE/I          | RG OUTPUT                 | 1 00         | UT PU:     | r 2        | PATTERN |

Рисунок 69

| Per                               |                                        | Normal           | off off 2       | C MODIFY      |
|-----------------------------------|----------------------------------------|------------------|-----------------|---------------|
| DblDel<br>Width<br>LeadE<br>TraiE | 100.0ns<br>20.00ns<br>0.80ns<br>=LeadE | Offset<br>Amplit | +0.0mV<br>1.00V | 100. <u>0</u> |
| MODE/1                            | rg outi                                | PUT 1            | OUTPUT 2        | PATTERN       |

Рисунок 70

8.7.2.9 Определить погрешность времени задержки парного импульса. устанавливая значения в соответствии с таблицей 26 и каждый раз нажимая клавишу MAN для новой установки:

34

Таблица 26

| Значение времени задержки | Допустимый диапазон времени |
|---------------------------|-----------------------------|
| парного импульса          | задержки парного импульса   |
| 500 мс                    | от 485 мс до 515 мс         |
| 1 c                       | от 970,00 мс до 1030,00 мс  |

8.7.2.10 Результаты проверки считать положительными, если измеренный диапазон задержки парного импульса генератора не превысит значений, указанных в таблицах 25 и 26.

- 8.8 Определение джиттера
- 8.8.1 Определение джиттера 81111А
- 8.8.1.1 Определение среднеквадратического джиттера с ГУН
- 8.8.1.1.1 Соединить генератор с осциллографом в соответствии с рисунком 71:





8.8.1.1.2 Установить характеристики сигнала генератора в соответствии с рисунками 72 и 73:

| Per                              | 50.00ns Normal OFF 2                                                                                       | MODIFY        |
|----------------------------------|------------------------------------------------------------------------------------------------------------|---------------|
| Delay<br>Width<br>LeadE<br>TraiE | 0ps Offset +500mV<br>25.00ns Amplit 1.00V<br>2.00ns 50 $\Omega$ into 50.0 $\Omega$<br>=LeadE_Separate Out2 | 50.0 <u>0</u> |
| MODE/1                           | TRG OUTPUT 1 OUTPUT 2                                                                                      | PATTERN       |
|                                  | Рисунок                                                                                                    | 72            |

| Per                              | 50.00ns                            | Normal                       | ∾ 1                     | MODIFY                              |
|----------------------------------|------------------------------------|------------------------------|-------------------------|-------------------------------------|
| Delay<br>Width<br>LeadE<br>TraiE | 0ps<br>25.00ns<br>2.00ns<br>=LeadE | Offset<br>Amplit<br>50Ω into | +500m<br>1.00V<br>50.0Ω | <sup>1</sup> 50.00<br><sup>ns</sup> |
| MODE/                            | TRG OUTI                           | PUT 1 OU                     | TPUT 2                  | PATTERN                             |

Рисунок 73

8.8.1.1.3 Установить параметры осциллографа Agilent 54121Т:

- 8.8.1.1.3.1 Нажать клавишу AUTOSCALE
- 8.8.1.1.3.2 Установить количество усреднений равное 64
- 8.8.1.1.3.3 Установить значение ослабления канала 2 равное 2

- 8.8.1.1.3.4 Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел
- 8.8.1.1.3.5 Установить значение смещения равным 500 мВ
- 8.8.1.1.3.6 Установить время развертки TIME/DIV равным 100 пс/дел

8.8.1.1.3.7 Установить положительный отклик сигала на экране осциллографа по центру (задержка приблизительно равна 29 нс)

- 8.8.1.1.3.8 Включить маркер напряжения
- 8.8.1.1.3.9 Установить маркер 1 в положение 490 мВ и маркер 2 в положение 500 мВ
- 8.8.1.1.3.10 Включить маркер времени

8.8.1.1.3.11 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1

8.8.1.1.3.12 Нажать клавишу PRECISE EDGE FIND

8.8.1.1.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.up).

8.8.1.1.5 Установить положительный отклик сигала на экране осциллографа по центру (приблизительно задержка равна 79 нс)

- 8.8.1.1.6 Нажать MORE и HISTOGRAM
- 8.8.1.1.7 Выбрать подменю и установить:

8.8.1.1.8 Источник – канал 2

8.8.1.1.9 Выбрать временную гистограмму

8.8.1.1.10 Нажать WINDOW MARKER 1 и установите его в значение 490 мВ

8.8.1.1.11 Нажать WINDOW MARKER 2 и установите его в значение 500 мВ

8.8.1.1.12 Выбрать подменю Acquire, установите число отсчетов равным 1000 и нажмите START ACQUIRING

8.8.1.1.13 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.1.1.14 Нажать MEAN и SIGMA. Записать значение sigma

8.8.1.1.15 Вычислить среднеквадратическое значение джиттера импульса по формуле:

Джиттер<sub>СК3</sub> = (6\* sigma- delta.t.up)/6

8.8.1.1.16 Установить период генератора равным 500 нс

8.8.1.1.17 Повторить измерения для значения TIME/DIV = 200 пс/дел. (задержка приблизительно равна 529 нс).

8.8.1.1.18 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 500 нс составило не более 65 пс, значение вычисленного джиттера для импульса длительностью 50 нс составило не более 20 пс.

8.8.1.2 Определение джиттера с ФАПЧ

8.8.1.2.1 Соединить генератор с осциллографом в соответствии с рисунком 74:



Рисунок 74

8.8.1.2.2 Установить характеристики сигнала генератора в соответствии с рисунками 75-77:

| CONTINUOUS PU              | JLSES                                  |                               | MODIFY                          |
|----------------------------|----------------------------------------|-------------------------------|---------------------------------|
| Sin<br>Sin<br>Pulse-Period | ngle-Pulse<br>ngle-Pulse<br>: internal | s at Out1<br>s at Out2<br>PLL | int. OSC<br>*int. PLL<br>CLK-IN |
| MODE/TRG                   | TIMING                                 | LEVELS                        | PATTERN                         |

Рисунок 75

| Per                              | 20.00ns                            | Normal                       | <sup>on</sup> 1          | MODIFY        |
|----------------------------------|------------------------------------|------------------------------|--------------------------|---------------|
| Delay<br>Width<br>LeadE<br>TraiE | 0ps<br>10.00ns<br>2.00ns<br>=LeadE | Offset<br>Amplit<br>50Ω into | +500mV<br>1.00V<br>50.0Ω | 20.0 <u>0</u> |
| MODE/                            | TRG OUTE                           | рит 1   оп<br>Рисунок        | <b>трит 2</b><br>76      | PATTERN       |

Per 20.00ns Normal OFF 2 MODIFY +500mV Delay Ops Offset 20.00 1.00V 10.00ns Amplit Width 2.00ns 50 $\Omega$  into 50.0 $\Omega$ ns LeadE =LeadE Separate Out2 TraiE

MODE/TRG

Рисунок 77

OUTPUT 1 OUTPUT 2 PATTERN

- 8.8.1.2.3 Установить параметры осциллографа Agilent 54121Т:
- Нажать клавишу AUTOSCALE 8.8.1.2.3.1
- Установить количество усреднений равное 64 8.8.1.2.3.2
- Установить значение ослабления канала 2 равное 2 8.8.1.2.3.3
- Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел 8.8.1.2.3.4
- Установить значение смещения равным 500 мВ 8.8.1.2.3.5
- Установить время развертки равным to 100 пс/дел 8.8.1.2.3.6

Установить положительный отклик сигала на экране осциллографа по центру 8.8.1.2.3.7 (задержка приблизительно равна 29 нс)

- Включить маркер напряжения 8.8.1.2.3.8
- Установить маркер 1 в положение 490 мВ и маркер 2 в положение 500 мВ 8.8.1.2.3.9
- Включить маркер времени 8.8.1.2.3.10
- Установить START ON EDGE = POS1 и STOP ON EDGE = POS1 8.8.1.2.3.11
- Нажать клавишу PRECISE EDGE FIND 8.8.1.2.3.12

8.8.1.2.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.up).

8.8.1.2.5 Установить положительный отклик сигала на экране осциллографа по центру (приблизительно задержка равна 49 нс)

8.8.1.2.6 Нажать MORE и HISTOGRAM

8.8.1.2.7 Выбрать подменю и установить:

8.8.1.2.8 Источник – канал 2

8.8.1.2.9 Выбрать временную гистограмму

8.8.1.2.10 Нажать WINDOW MARKER 1 и установите его в значение 490 мВ

8.8.1.2.11 Нажать WINDOW MARKER 2 и установите его в значение 500 мВ

8.8.1.2.12 Выбрать подменю Acquire, установить число отсчетов равным 1000 и нажать START ACQUIRING

8.8.1.2.13 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.1.2.14 Нажать MEAN и SIGMA. Записать значение sigma

8.8.1.2.15 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma - delta.t.up)/6

8.8.1.2.16 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 20 нс составило не более 15.2 пс.

8.8.1.3 Определение джиттера импульса

8.8.1.3.1 Соединить генератор с осциллографом в соответствии с рисунком 78:

![](_page_36_Figure_30.jpeg)

![](_page_36_Figure_31.jpeg)

![](_page_36_Figure_32.jpeg)

8.8.1.3.2 Установить характеристики сигнала генератора в соответствии с рисунками 79 и 80:

| Per                    | 1.000µs Normal                                           | <sup>on</sup> 1                         | MODIFY            |
|------------------------|----------------------------------------------------------|-----------------------------------------|-------------------|
| Delay                  | Ops Offset                                               | +500mV                                  | 3 030             |
| Width                  | 3.030ns Amplit                                           | 1.00V                                   |                   |
| LeadE                  | 2.00ns 50 $\Omega$ into                                  | 50.0 <b>Ω</b>                           | ns                |
| TraiE                  | =LeadE                                                   |                                         |                   |
| MODE/I                 | RG OUTPUT 1 OU                                           | TPUT 2                                  | PATTERN           |
| MODE/I                 | rg output 1 ou<br>Pucyho                                 | трит 2<br>ок 79                         | PATTERN           |
| MODE/T<br>Per          | RG OUTPUT 1 OU<br>Pucyho<br>1.000µs Normal               | трит 2<br>ок 79<br>ОFF <b>2</b>         | PATTERN           |
| MODE/T<br>Per<br>Delay | RG OUTPUT 1 OU<br>Pucyho<br>1.000µs Normal<br>Ops Offset | трит 2<br>ж 79<br>ОFF <b>2</b><br>+500п | PATTERN<br>MODIFY |

| LeadE  | 2.00ns 50 $\Omega$ into 50.0 $\Omega$ | ns      |
|--------|---------------------------------------|---------|
| TraiE  | =LeadE_Separate Out2                  |         |
| MODE/T | RG OUTPUT 1 OUTPUT 2                  | PATTERN |
|        |                                       |         |

Рисунок 80

8.8.1.3.3 Установить параметры осциллографа Agilent 54121T:

Нажать клавишу AUTOSCALE 8.8.1.3.3.1

Установить количество усреднений равное 128 8.8.1.3.3.2

Установить значение ослабления канала 2 равное 2 8.8.1.3.3.3

Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел 8.8.1.3.3.4

Установить значение смещения равным 500 мВ 8.8.1.3.3.5

Установить время развертки равным 10 пс/дел 8.8.1.3.3.6

Установить положительный отклик сигнала на экране осциллографа по центру 8.8.1.3.3.7 (задержка приблизительно равна 33,8 нс)

Включить маркер напряжения 8.8.1.3.3.8

Установить маркер 2 в положение 490 мВ и маркер 1 в положение 500 мВ 8.8.1.3.3.9

Включить маркер времени 8.8.1.3.3.10

Установить START ON EDGE = POS1 и STOP ON EDGE = POS1 8.8.1.3.3.11

Нажать клавишу PRECISE EDGE FIND 8.8.1.3.3.12

8.8.1.3.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.dn).

8.8.1.3.5 Установить длительность импульса генератора равной 50 нс

8.8.1.3.6 Установить отрицательный отклик сигала на экране осциллографа по центру (задержка равна приблизительно 80,5 нс)

8.8.1.3.7 Нажать MORE и HISTOGRAM

8.8.1.3.8 Выбрать подменю и установить:

8.8.1.3.9 Источник - канал 2

8.8.1.3.10 Выбрать временую гистограмму

8.8.1.3.11 Нажать WINDOW MARKER 1 и установить его в значение 490 мВ

8.8.1.3.12 Нажать WINDOW MARKER 2 и установить его в значение 500 мВ

8.8.1.3.13 Выбрать подменю Acquire, установить число отсчетов равным 1000 и нажать START ACQUIRING

8.8.1.3.14 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.1.3.15 Нажать MEAN и SIGMA. Записать значение sigma

8.8.1.3.16 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma- delta.t.dn)/6

8.8.1.3.17 Установить период генератора равным 500 нс

8.8.1.3.18 Повторить измерения для значения TIME/DIV = 100 пс/дел; задержка приблизительно равна 530 нс.

8.8.1.3.19 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 50 нс составило не более 20 пс. а значение вычисленного джиттера для импульса длительностью 500 нс составило не более 65 пс.

8.8.2 Определение джиттера 81112А

8.8.2.1 Определение среднеквадратического джиттера с ГУН

8.8.2.1.1 Соединить генератор с осциллографом в соответствии с рисунком 81:

![](_page_38_Figure_6.jpeg)

Рисунок 81

8.8.2.1.2 Установить характеристики сигнала генератора в соответствии с рисунками 82 и 83:

| Delay Ops Offset +500mV<br>Width 25.00ns Amplit 1.00V<br>LeadE 0.80ns<br>TraiE =LeadE 0UTPUT 1 OUTPUT 2 PATTERN | Per                              | 50.00ns                            | Normal           | ON<br>OFF  | 1          | MODIFY        |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|------------------|------------|------------|---------------|
| MODE/TRG OUTPUT 1 OUTPUT 2 PATTERN                                                                              | Delay<br>Width<br>LeadE<br>TraiE | 0ps<br>25.00ns<br>0.80ns<br>=LeadE | Offset<br>Amplit | +50<br>1.0 | 0mV<br>0V  | 50.0 <u>0</u> |
| Рисунок 82                                                                                                      | MODE/                            | TRG OUTE                           | PUT 1            | OUTPUT     | 2<br>0K 82 | PATTERN       |

| Per            | 50.00ns Normal               | off off         | MODIFY  |
|----------------|------------------------------|-----------------|---------|
| Delay<br>Width | 0ps Offset<br>25.00ns Amplit | +500mV<br>1.00V | 50.00   |
| LeadE<br>TraiE | 0.80ns<br>=LeadE             |                 | ns      |
| MODE/1         | TRG OUTPUT 1                 | OUTPUT 2        | PATTERN |

Рисунок 83

8.8.2.1.3 Установить параметры осциллографа Agilent 54121T:

- 8.8.2.1.3.1 Нажать клавишу AUTOSCALE
- 8.8.2.1.3.2 Установить количество усреднений равное 64
- 8.8.2.1.3.3 Установить значение ослабления канала 2 равное 2

8.8.2.1.3.4 Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел

8.8.2.1.3.5 Установить значение смещения равным 500 мВ

8.8.2.1.3.6 Установить время развертки TIME/DIV равным 100 пс/дел

8.8.2.1.3.7 Установить положительный отклик сигала на экране осциллографа по центру (задержка приблизительно равна 29 нс)

8.8.2.1.3.8 Включить маркер напряжения

8.8.2.1.3.9 Установить маркер 1 в положение 490 мВ и маркер 2 в положение 500 мВ

8.8.2.1.3.10 Включить маркер времени

8.8.2.1.3.11 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1

8.8.2.1.3.12 Нажать клавишу PRECISE EDGE FIND

8.8.2.1.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.up).

8.8.2.1.5 Установить положительный отклик сигала на экране осциллографа по центру (приблизительно задержка равна 79 нс)

8.8.2.1.6 Нажать MORE и HISTOGRAM

8.8.2.1.7 Выбрать подменю и установить:

8.8.2.1.8 Источник – канал 2

.

8.8.2.1.9 Выбрать временную гистограмму

8.8.2.1.10 Нажать WINDOW MARKER 1 и установите его в значение 490 мВ

8.8.2.1.11 Нажать WINDOW MARKER 2 и установите его в значение 500 мВ

8.8.2.1.12 Выбрать подменю Acquire, установите число отсчетов равным 1000 и нажмите START ACQUIRING

8.8.2.1.13 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.2.1.14 Нажать MEAN и SIGMA. Записать значение sigma

8.8.2.1.15 Вычислить среднеквадратическое значение джиттера импульса по формуле:

Джиттер<sub>СК3</sub> = (6\* sigma- delta.t.up)/6

8.8.2.1.16 Установить период генератора равным 500 нс

8.8.2.1.17 Повторить измерения для значения TIME/DIV = 200 пс/дел. (задержка приблизительно равна 529 нс).

8.8.2.1.18 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для для импульса длительностью 500 нс составило не более 65 пс, значение вычисленного джиттера для импульса длительностью 50 нс составило не более 20 пс.

8.8.2.2 Определение джиттера с ФАПЧ

8.8.2.2.1 Соединить генератор с осциллографом в соответствии с рисунком 84:

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

Рисунок 84

8.8.2.2.2 Установить характеристики сигнала генератора в соответствии с рисунками 85-87:

![](_page_40_Figure_4.jpeg)

Рисунок 85

| Per            | 20.00ns              | Normal           | on 1            | MODIFY  |
|----------------|----------------------|------------------|-----------------|---------|
| Delay<br>Width | 0ps<br>10.00ns       | Offset<br>Amplit | +500mV<br>1.00V | 20.00   |
| LeadE          | 0.80ns               | 1                |                 | ns      |
| TraiE<br>MODE/ | =LeadE<br>TRG   OUTI | PUT 1            | OUTPUT 2        | PATTERN |

Рисунок 86

| Per                              | 20.00ns Normal                                   | off 2           | MODIFY        |
|----------------------------------|--------------------------------------------------|-----------------|---------------|
| Delay<br>Width<br>LeadE<br>TraiE | Ops Offset<br>10.00ns Amplit<br>0.80ns<br>=LeadE | +500mV<br>1.00V | 20.0 <u>0</u> |
| MODE /                           | IRG OUTPUT 1                                     | OUTPUT 2        | PATTERN       |

Рисунок 87

- 8.8.2.2.3 Установить параметры осциллографа Agilent 54121T:
- 8.8.2.2.3.1 Нажать клавишу AUTOSCALE
- 8.8.2.2.3.2 Установить количество усреднений равное 64
- 8.8.2.2.3.3 Установить значение ослабления канала 2 равное 2
- 8.8.2.2.3.4 Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел
- 8.8.2.2.3.5 Установить значение смещения равным 500 мВ
- 8.8.2.2.3.6 Установить время развертки равным to 100 пс/дел

8.8.2.2.3.7 Установить положительный отклик сигала на экране осциллографа по центру (задержка приблизительно равна 29 нс)

- 8.8.2.2.3.8 Включить маркер напряжения
- 8.8.2.2.3.9 Установить маркер 1 в положение 490 мВ и маркер 2 в положение 500 мВ
- 8.8.2.2.3.10 Включить маркер времени
- 8.8.2.2.3.11 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1
- 8.8.2.2.3.12 Нажать клавишу PRECISE EDGE FIND

8.8.2.2.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.up).

8.8.2.2.5 Установить положительный отклик сигала на экране осциллографа по центру (приблизительно задержка равна 79 нс)

8.8.2.2.6 Нажать MORE и HISTOGRAM

8.8.2.2.7 Выбрать подменю и установить:

8.8.2.2.8 Источник – канал 2

8.8.2.2.9 Выбрать временную гистограмму

8.8.2.2.10 Нажать WINDOW MARKER 1 и установите его в значение 490 мВ

8.8.2.2.11 Нажать WINDOW MARKER 2 и установите его в значение 500 мВ

8.8.2.2.12 Выбрать подменю Acquire, установить число отсчетов равным 1000 и нажать START ACQUIRING

8.8.2.2.13 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.2.2.14 Нажать MEAN и SIGMA. Записать значение sigma

8.8.2.2.15 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma - delta.t.up)/6

8.8.2.2.16 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 20 нс составило не более 15,2 пс.

8.8.2.3 Определение джиттера импульса

8.8.2.3.1 Соединить генератор с осциллографом в соответствии с рисунком 88:

![](_page_41_Figure_30.jpeg)

![](_page_41_Figure_31.jpeg)

![](_page_41_Figure_32.jpeg)

8.8.2.3.2 Установить характеристики сигнала генератора в соответствии с рисунками 89 и 90:

| Per                     | 1.000µs Normal                         | on 1            | MODIFY  |
|-------------------------|----------------------------------------|-----------------|---------|
| Delay<br>Width<br>LeadE | 0ps Offset<br>1.515ns Amplit<br>0.80ns | +500mV<br>1.00V | 1.515   |
| TraiE<br>MODE/T         | RG OUTPUT 1                            | OUTPUT 2        | PATTERN |

4

Рисунок 89

| Per                     | 1.000µs Normal                         | off 2           | MODIFY        |
|-------------------------|----------------------------------------|-----------------|---------------|
| Delay<br>Width<br>LeadE | Ops Offset<br>1.515ns Amplit<br>0.80ns | +500mV<br>1.00V | 1.51 <u>5</u> |
| TraiE<br>MODE/1         | =LeadE                                 | OUTPUT 2        | PATTERN       |

Рисунок 90

- 8.8.2.3.3 Установить параметры осциллографа Agilent 54121T:
- 8.8.2.3.3.1 Нажать клавишу AUTOSCALE
- 8.8.2.3.3.2 Установить количество усреднений равное 128
- 8.8.2.3.3.3 Установить значение ослабления канала 2 равное 2
- 8.8.2.3.3.4 Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел
- 8.8.2.3.3.5 Установить значение смещения равным 500 мВ
- 8.8.2.3.3.6 Установить время развертки равным to 10 пс/дел
- 8.8.2.3.3.7 Установить положительный отклик сигнала на экране осциллографа по центру (задержка приблизительно равна 33,8 нс)
- 8.8.2.3.3.8 Включить маркер напряжения
- 8.8.2.3.3.9 Установить маркер 2 в положение 490 мВ и маркер 1 в положение 500 мВ
- 8.8.2.3.3.10 Включить маркер времени
- 8.8.2.3.3.11 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1
- 8.8.2.3.3.12 Нажать клавишу PRECISE EDGE FIND

8.8.2.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.dn).

8.8.2.5 Установить длительность импульса генератора равной 50 нс

8.8.2.6 Установить отрицательный отклик сигала на экране осциллографа по центру (задержка равна приблизительно 80.5 нс)

- 8.8.2.7 Нажать MORE и HISTOGRAM
- 8.8.2.8 Выбрать подменю и установить:
- 8.8.2.9 Источник канал 2
- 8.8.2.10 Выбрать временную гистограмму
- 8.8.2.11 Нажать WINDOW MARKER 2 и установить его в значение 490 мВ
- 8.8.2.12 Нажать WINDOW MARKER 1 и установить его в значение 500 мВ

8.8.2.13 Выбрать подменю Acquire, установить число отсчетов равным 1000 и нажать START ACQUIRING

- 8.8.2.14 После того, как вычисления закончатся, выбрать результирующее подменю.
- 8.8.2.15 Нажать MEAN и SIGMA. Записать значение sigma
- 8.8.2.16 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСК3 = (6\* sigma- delta.t.dn)/6

8.8.2.17 Установить период генератора равным 500 нс

8.8.2.18 Повторить измерения для значения ТІМЕ/DIV = 100 пс/дел; задержка приблизительно равна 530 нс.

8.8.2.19 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 50 нс составило не более 20 пс, а значение вычисленного джиттера для импульса длительностью 500 нс составило не более 65 пс.

8.8.3 Определение джиттера 81131А

8.8.3.1 Определение джиттера периода

8.8.3.1.1 Соединить генератор с осциллографом в соответствии с рисунком 91:

Осциплограф 54750A + 54751A

![](_page_43_Figure_8.jpeg)

Рисунок 91

8.8.3.1.2 Установить характеристики сигнала генератора в соответствии с рисунками 92 и 93:

| Per            | 20.00ns          |                  | on 1            | MODIFY        |
|----------------|------------------|------------------|-----------------|---------------|
| Delay<br>Width | 0ps<br>10.00ns   | Offset<br>Amplit | +500mV<br>1.00V | 20.0 <u>0</u> |
| LeadE<br>TraiE | 0.80ns<br>=LeadE | _                |                 | ns            |
| MODE/1         | TRG OUTE         | PUT 1            | OUTPUT 2        | PATTERN       |

![](_page_43_Figure_12.jpeg)

| Per                     | 20.00ns                  |                  | OFF<br>OFF | 2           | CMODIFY       |
|-------------------------|--------------------------|------------------|------------|-------------|---------------|
| Delay<br>Width<br>LeadE | 0ps<br>10.00ns<br>0.80ns | Offset<br>Amplit | +50<br>1.0 | 0mV)<br>00V | 20.0 <u>0</u> |
| TraiE<br>MODE/          | =LeadE<br>TRG OUTE       | Separate         | Out        | 2<br>F 2    | PATTERN       |

Рисунок 93

8.8.3.1.3 Установить параметры осциллографа Agilent 54121Т:

8.8.3.1.3.1 Нажать клавишу AUTOSCALE

8.8.3.1.3.2 Установить количество усреднений равное 64

8.8.3.1.3.3 Установить значение ослабления канала 2 равное 2

8.8.3.1.3.4 Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел

8.8.3.1.3.5 Установить значение смещения равным 500 мВ

8.8.3.1.3.6 Установить время развертки TIME/DIV равным 100 пс/дел

8.8.3.1.3.7 Установить положительный отклик сигала на экране осциллографа по центру (задержка приблизительно равна 29 нс)

8.8.3.1.3.8 Включить маркер напряжения

8.8.3.1.3.9 Установить маркер 1 в положение 490 мВ и маркер 2 в положение 500 мВ

8.8.3.1.3.10 Включить маркер времени

8.8.3.1.3.11 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1

8.8.3.1.3.12 Нажать клавишу PRECISE EDGE FIND

8.8.3.1.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.up).

8.8.3.1.5 Установить положительный отклик сигала на экране осциллографа по центру (приблизительно задержка равна 79 нс)

8.8.3.1.6 Нажать MORE и HISTOGRAM

8.8.3.1.7 Выбрать подменю и установить:

8.8.3.1.8 Источник – канал 2

8.8.3.1.9 Выбрать временную гистограмму

8.8.3.1.10 Нажать WINDOW MARKER 1 и установите его в значение 490 мВ

8.8.3.1.11 Нажать WINDOW MARKER 2 и установите его в значение 500 мВ

8.8.3.1.12 Выбрать подменю Acquire, установите число отсчетов равным 1000 и нажмите

START ACQUIRING

8.8.3.1.13 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.3.1.14 Нажать MEAN и SIGMA. Записать значение sigma

8.8.3.1.15 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma- delta.t.up)/6

8.8.3.1.16 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 20 нс составило не более 15.2 пс.

8.8.3.2 Определение джиттера импульса

8.8.3.2.1 Соединить генератор с осциллографом в соответствии с рисунком 94:

![](_page_44_Figure_31.jpeg)

8.8.3.2.2 Установить характеристики генератора в соответствии с рисунками 95 и 96:

| .000µs         |                                             | ON<br>OFF                                        | 1                                                                          | C                                                             | MODIFY                                                        |
|----------------|---------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| 0ps<br>1.250ns | Offset<br>Amplit                            | +50<br>1.0                                       | 0mV<br>0V                                                                  | 1                                                             | .250                                                          |
| 0.80ns         | •                                           |                                                  |                                                                            |                                                               | ns                                                            |
| =LeadE         | _                                           |                                                  |                                                                            |                                                               |                                                               |
|                | 000µs<br>0ps<br>1.250ns<br>0.80ns<br>=LeadE | Ops Offset<br>1.250ns Amplit<br>0.80ns<br>=LeadE | Ops Offset +50<br>0ps Offset +50<br>1.250ns Amplit 1.0<br>0.80ns<br>=LeadE | Ops Offset +500mV<br>1.250ns Amplit 1.00V<br>0.80ns<br>=LeadE | Ops Offset +500mV<br>1.250ns Amplit 1.00V<br>0.80ns<br>=LeadE |

![](_page_45_Figure_2.jpeg)

| Per                     | 1.000µs                  |                  | OFF<br>OFF | 2           | C MODIFY      |
|-------------------------|--------------------------|------------------|------------|-------------|---------------|
| Delay<br>Width<br>LeadE | 0ps<br>1.250ns<br>0.80ns | Offset<br>Amplit | +50<br>1.0 | 00mV<br>00V | 1.25 <u>0</u> |
| TraiE<br>MODE/I         | =LeadE                   | Separ            | ate O      | ut2<br>T 2  | PATTERN       |

Рисунок 96

8.8.3.2.3 Установить параметры осциллографа Agilent 54121Т:

8.8.3.2.3.1 Нажать клавишу AUTOSCALE

8.8.3.2.3.2 Установить количество усреднений равное 128

8.8.3.2.3.3 Установить значение ослабления канала 2 равное 2

8.8.3.2.3.4 Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел

8.8.3.2.3.5 Установить значение смещения равным 500 мВ

8.8.3.2.3.6 Установить время развертки равным 10 пс/дел

8.8.3.2.3.7 Установить положительный отклик сигнала на экране осциллографа по центру (задержка приблизительно равна 33,8 нс)

8.8.3.2.3.8 Включить маркер напряжения

8.8.3.2.3.9 Установить маркер 1 в положение 500 мВ и маркер 2 в положение 490 мВ

8.8.3.2.3.10 Включить маркер времени

8.8.3.2.3.11 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1

8.8.3.2.3.12 Нажать клавишу PRECISE EDGE FIND

8.8.3.2.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.dn).

8.8.3.2.5 Установить длительность импульса генератора равной 50 нс

8.8.3.2.6 Установить отрицательный отклик сигала на экране осциллографа по центру (задержка равна приблизительно 80,5 нс)

8.8.3.2.7 Нажать MORE и HISTOGRAM

8.8.3.2.8 Выбрать подменю и установить:

8.8.3.2.9 Источник – канал 2

8.8.3.2.10 Выбрать временную гистограмму

8.8.3.2.11 Нажать WINDOW MARKER 1 и установить его в значение 500 мВ

8.8.3.2.12 Нажать WINDOW MARKER 2 и установить его в значение 490 мВ

8.8.3.2.13 Выбрать подменю Acquire, установить число отсчетов равным 1000 и нажать START ACQUIRING

- 8.8.3.2.14 После того, как вычисления закончатся, выбрать результирующее подменю.
- 8.8.3.2.15 Нажать MEAN и SIGMA. Записать значение sigma
- 8.8.3.2.16 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma- delta.t.dn)/6

8.8.3.2.17 Установить период генератора равным 500 нс

8.8.3.2.18 Повторить измерения для значения TIME/DIV = 100 пс/дел; задержка приблизительно равна 530 нс.

8.8.3.2.19 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 50 нс составило не более 20 пс, а значение вычисленного джиттера для импульса длительностью 500 нс составило не более 20 пс.

8.8.3.3 Определение джиттера времени задержки

8.8.3.3.1 Соединить генератор с осциллографом в соответствии с рисунком 97:

![](_page_46_Figure_10.jpeg)

Рисунок 97

8.8.3.3.2 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 98 и 99:

![](_page_46_Figure_13.jpeg)

Рисунок 98

| Per            | 1.000us          |                  | ON<br>OFF | 2           | MODIFY        |
|----------------|------------------|------------------|-----------|-------------|---------------|
| Delay<br>Width | 50.00ns          | Offset<br>Amplit | +50       | 00mV<br>00V | 50.0 <u>0</u> |
| LeadE<br>TraiE | 0.80ns<br>=LeadE | Separa           | te Out    | 2           | ns            |
| MODE/T         | RG OUTP          | UT 1             | OUTPU     | т 2         | PATTERN       |

Рисунок 99

8.8.3.3.3 Установить параметры осциллографа Agilent 54121Т:

8.8.3.3.3.1 Нажать клавишу AUTOSCALE

8.8.3.3.3.2 Установить количество усреднений равное 64

8.8.3.3.3.3 Установить значение VOLTS/DIV равное 10 мВ/дел

8.8.3.3.3.4 Установить значение смещения равным 500 мВ

8.8.3.3.3.5 Установить время развертки TIME/DIV равным 100 пс/дел

8.8.3.3.3.6 Установить положительный отклик сигала на экране осциллографа по центру

(задержка приблизительно равна 80 нс)

8.8.3.3.3.7 Включить маркер напряжения

8.8.3.3.3.8 Нажать MORE и HISTOGRAM

8.8.3.3.3.9 Выбрать подменю и установить:

8.8.3.3.3.10 Источник – канал 2

8.8.3.3.3.11 Выбрать временную гистограмму

8.8.3.3.3.12 Нажать WINDOW MARKER 1 и установите его в значение 490 мВ

8.8.3.3.3.13 Нажать WINDOW MARKER 2 и установите его в значение 500 мВ

8.8.3.3.3.14 Выбрать подменю Acquire, установите число отсчетов равным 1000 и нажмите START ACQUIRING

8.8.3.3.3.15 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.3.3.3.16 Нажать MEAN и SIGMA. Записать значение sigma

8.8.3.3.4 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma- delta.t.up)/6

8.8.3.3.5 Установить время задержки генератора равным 500 нс

8.8.3.3.6 Повторить измерения для значения TIME/DIV = 100 пс/дел; задержка приблизительно равна 530 нс.

8.8.3.3.7 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 50 нс составило не более 15.5 пс, а значение вычисленного джиттера для задержки 500 нс составило не более 20 пс.

8.8.4 Определение джиттера 81132А

8.8.4.1 Определение джиттера периода

8.8.4.1.1 Соединить генератор с осциллографом в соответствии с рисунком 100:

48

![](_page_48_Figure_0.jpeg)

![](_page_48_Figure_1.jpeg)

Рисунок 100

8.8.4.1.2 Установить характеристики сигнала генератора в соответствии с рисунками 101 и 102:

| Per<br>Delay<br>Width | 20.00ns<br>0ps<br>10.00ns | Offset<br>Amplit | OFF <b>1</b><br>+500m <sup>1</sup><br>1.00V | $\begin{array}{c} \hline MODIFY \\ 20.00 \\ ns \end{array}$ |
|-----------------------|---------------------------|------------------|---------------------------------------------|-------------------------------------------------------------|
| MODE/1                |                           | PUT 1            | OUTPUT 2                                    | PATTERN                                                     |

|                |                      | l<br>        |            |           |               |
|----------------|----------------------|--------------|------------|-----------|---------------|
| Per            | 20.00ns              |              | off<br>off | 2         | MODIFY        |
| Delay<br>Width | 0ps Of<br>10.00ns Am | fset<br>plit | +50<br>1.0 | 0mV<br>0V | 20.0 <u>0</u> |
|                | Se                   | parate       | e Out      | 2 _       |               |
| MODE/1         | RGOUTPUT             | 1 0          | UTPUT      | 2         | PATTERN       |

Рисунок 102

8.8.4.1.3 Установить параметры осциллографа Agilent 54121Т:

- 8.8.4.1.3.1 Нажать клавишу AUTOSCALE
- 8.8.4.1.3.2 Установить количество усреднений равное 64
- 8.8.4.1.3.3 Установить значение ослабления канала 2 равное 2
- 8.8.4.1.3.4 Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел
- 8.8.4.1.3.5 Установить значение смещения равным 500 мВ
- 8.8.4.1.3.6 Установить время развертки TIME/DIV равным 100 пс/дел
- 8.8.4.1.3.7 Установить положительный отклик сигала на экране осциллографа по центру (задержка приблизительно равна 29 нс)
- 8.8.4.1.3.8 Включить маркер напряжения

8.8.4.1.3.9 Установить маркер 1 в положение 490 мВ и маркер 2 в положение 500 мВ

8.8.4.1.3.10 Включить маркер времени

8.8.4.1.3.11 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1

8.8.4.1.3.12 Нажать клавишу PRECISE EDGE FIND

8.8.4.1.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.up).

8.8.4.1.5 Установить положительный отклик сигала на экране осциллографа по центру (приблизительно задержка равна 79 нс)

8.8.4.1.6 Нажать MORE и HISTOGRAM

8.8.4.1.7 Выбрать подменю и установить:

8.8.4.1.8 Источник - канал 2

8.8.4.1.9 Выбрать временную гистограмму

8.8.4.1.10 Нажать WINDOW MARKER 1 и установите его в значение 490 мВ

8.8.4.1.11 Нажать WINDOW MARKER 2 и установите его в значение 500 мВ

8.8.4.1.12 Выбрать подменю Acquire, установите число отсчетов равным 1000 и нажмите START ACQUIRING

8.8.4.1.13 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.4.1.14 Нажать MEAN и SIGMA. Записать значение sigma

8.8.4.1.15 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma- delta.t.up)/6

8.8.4.1.16 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 20 нс составило не более 15.2 пс.

8.8.4.2 Определение джиттера импульса

8.8.4.2.1 Соединить генератор с осциллографом в соответствии с рисунком 103:

![](_page_49_Figure_20.jpeg)

Рисунок 103

8.8.4.2.2 Установить характеристики генератора в соответствии с рисунками 104 и 105:

![](_page_50_Picture_0.jpeg)

Рисунок 104

| Per            | 1.000µs                    | OFF<br>OFF | 2         | MODIFY               |
|----------------|----------------------------|------------|-----------|----------------------|
| Delay<br>Width | 0ps Offset<br>750ps Amplit | +50<br>1.0 | 0mV<br>0V | 750<br><sub>ps</sub> |
|                | Separat                    | te Out     | :2        |                      |
| MODE/TI        | RG OUTPUT 1                | OUTPUT     | 2         | PATTERN              |

Рисунок 105

8.8.4.2.3 Установить параметры осциллографа Agilent 54121Т:

8.8.4.2.3.1 Нажать клавишу AUTOSCALE

8.8.4.2.3.2 Установить количество усреднений равное 128

8.8.4.2.3.3 Установить значение ослабления канала 2 равное 2

8.8.4.2.3.4 Установить значение VOLTS/DIV канала 2 равное 10 мВ/дел

8.8.4.2.3.5 Установить значение смещения равным 500 мВ

8.8.4.2.3.6 Установить время развертки равным 10 пс/дел

8.8.4.2.3.7 Установить положительный отклик сигнала на экране осциллографа по центру

(задержка приблизительно равна 33,8 нс)

8.8.4.2.3.8 Включить маркер напряжения

8.8.4.2.3.9 Установить маркер 1 в положение 500 мВ и маркер 2 в положение 490 мВ

8.8.4.2.3.10 Включить маркер времени

8.8.4.2.3.11 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1

8.8.4.2.3.12 Нажать клавишу PRECISE EDGE FIND

8.8.4.2.4 Записать значение маркер времени delta t. Это значение необходимо для вычисления джиттера (delta.t.dn).

8.8.4.2.5 Установить длительность импульса генератора равной 50 нс

8.8.4.2.6 Установить отрицательный отклик сигала на экране осциллографа по центру (задержка равна приблизительно 80 нс)

8.8.4.2.7 Нажать MORE и HISTOGRAM

8.8.4.2.8 Выбрать подменю и установить:

8.8.4.2.9 Источник – канал 2

8.8.4.2.10 Выбрать временную гистограмму

8.8.4.2.11 Нажать WINDOW MARKER 1 и установить его в значение 500 мВ

8.8.4.2.12 Нажать WINDOW MARKER 2 и установить его в значение 490 мВ

8.8.4.2.13 Выбрать подменю Acquire, установить число отсчетов равным 1000 и нажать START ACQUIRING

8.8.4.2.14 После того, как вычисления закончатся, выбрать результирующее подменю.

8.8.4.2.15 Нажать MEAN и SIGMA. Записать значение sigma

8.8.4.2.16 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma- delta.t.dn)/6

8.8.4.2.17 Установить период генератора равным 500 нс

8.8.4.2.18 Повторить измерения для значения TIME/DIV = 100 пс/дел; задержка приблизительно равна 530 нс.

8.8.4.2.19 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 50 нс составило не более 15.5 пс, а значение вычисленного джиттера для импульса длительностью 500 нс составило не более 20 пс.

8.8.4.3 Определение джиттера времени задержки

8.8.4.3.1 Соединить генератор с осциллографом в соответствии с рисунком 103:

![](_page_51_Figure_6.jpeg)

![](_page_51_Figure_7.jpeg)

![](_page_51_Figure_8.jpeg)

8.8.4.3.2 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 104 и 105:

| Per            | 1.000µs                          | $_{\rm OFF}^{\rm ON}$ 1 | CMODIFY       |
|----------------|----------------------------------|-------------------------|---------------|
| Delay<br>Width | 50.00ns Offset<br>50.00ns Amplit | +500mV<br>1.00V         | 50.0 <u>0</u> |
| MODE/1         | RG OUTPUT 1 0                    | UTPUT 2                 | PATTERN       |

![](_page_51_Figure_11.jpeg)

- 8.8.4.3.3 Установить параметры осциллографа Agilent 54121Т:
- 8.8.4.3.3.1 Нажать клавишу AUTOSCALE
- 8.8.4.3.3.2 Установить количество усреднений равное 64
- 8.8.4.3.3.3 Установить значение VOLTS/DIV равное 10 мВ/дел

- Установить значение смещения равным 500 мВ 8.8.4.3.3.4
- Установить время развертки TIME/DIV равным 100 пс/дел 884335

Установить положительный отклик сигала на экране осциллографа по центру 8.8.4.3.3.6 (задержка приблизительно равна 80 нс)

- Включить маркер напряжения 8.8.4.3.3.7
- Нажать MORE и HISTOGRAM 8.8.4.3.3.8
- Выбрать подменю и установить: 8.8.4.3.3.9
- 8.8.4.3.3.10 Источник – канал 2
- Выбрать временную гистограмму 8.8.4.3.3.11
- Нажать WINDOW MARKER 1 и установите его в значение 490 мВ 8.8.4.3.3.12
- Нажать WINDOW MARKER 2 и установите его в значение 500 мВ 8.8.4.3.3.13

Выбрать подменю Acquire, установите число отсчетов равным 1000 и нажмите 8.8.4.3.3.14 START ACQUIRING

После того, как вычисления закончатся, выбрать результирующее подменю. 8.8.4.3.3.15

8.8.4.3.4 Нажать MEAN и SIGMA. Записать значение sigma

8.8.4.3.5 Вычислить среднеквадратическое значение джиттера импульса по формуле:

ДжиттерСКЗ = (6\* sigma- delta.t.up)/6

8.8.4.3.6 Установить время задержки генератора равным 500 нс

8.8.4.3.7 Повторить измерения для значения TIME/DIV = 100 пс/дел; задержка приблизительно равна 530 нс.

8.8.4.3.8 Результаты проверки считать удовлетворительными, если значение вычисленного джиттера для импульса длительностью 50 нс составило не более 15.5 пс. а значение вычисленного джиттера для задержки 500 нс составило не более 20 пс.

8.9 Определение значения диапазона устанавливаемого напряжения и погрешности устанавливаемого напряжения

8.9.1 Определение значения диапазона устанавливаемого напряжения и погрешности устанавливаемого напряжения 81111А

8.9.1.1 Определение значения диапазона устанавливаемого напряжения и погрешности устанавливаемого напряжения 50 Ом на 50 Ом

8.9.1.1.1 Соединить генератор и цифровой мультиметр в соответствии с рисунком 106:

![](_page_52_Figure_22.jpeg)

53

Рисунок 106

8.9.1.1.2 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 107 и 108:

| Per                              | 100.0ms                                | Normal                | ON                       | 1                   | MODIFY             |
|----------------------------------|----------------------------------------|-----------------------|--------------------------|---------------------|--------------------|
| Delay<br>Width<br>LeadE<br>TraiE | 25.00ms<br>50.00ms<br>2.00ns<br>=LeadB | High<br>Low<br>50Ω in | +10<br>+0.<br>nto 50     | . 0V<br>0mV<br>. 0Ω | +10. <u>0</u><br>v |
| MODE/1                           | rg out                                 | рит 1<br>Рисул        | о <b>итри</b><br>нок 107 | т 2                 | PATTERN            |

| Per                              | 100.0ms Normal                                                  | <sup>off</sup> 2                       | MODIFY     |
|----------------------------------|-----------------------------------------------------------------|----------------------------------------|------------|
| Delay<br>Width<br>LeadE<br>TraiE | 25.00ms High<br>50.00ms Low<br>2.00ns 50Ω int<br>=LeadE_Separat | +10.0V<br>+0.0mV<br>to 50.0Ω<br>e Out2 | +10.0<br>v |
| MODE/1                           | RG OUTPUT 1                                                     | OUTPUT 2                               | PATTERN    |

Рисунок 108

8.9.1.1.3 Установить следующие параметры цифрового мультиметра:

Function: DCV

Trigger: TRIG EXT

AD-Converter integration time NPLC: 0.1

8.9.1.1.4 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 27:

Таблица 27

| Уровень выходного сигнала, В | Допустимый диапазон  |
|------------------------------|----------------------|
| (high)                       | выходного напряжения |
| 10.0 B                       | от 9,85 В до 10,15 В |
| 5.0 B                        | от 490 мВ до 510 мВ  |
| 3.0 B                        | от 2,92 В до 3,08 В  |
| 10B                          | от 0,93 В до 1,07 В  |
| 05B                          | от 440 мВ до 560 мВ  |
| 0,1 B                        | от 48 мВ до 152 мВ   |

8.9.1.1.5 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 109 и 110:

| Per            | 100.0ms Normal               | <sup>on</sup> 1  | MODIFY  |
|----------------|------------------------------|------------------|---------|
| Delay<br>Width | 75.00ms High<br>50.00ms Low  | +0.0mV<br>-100mV | -100    |
| LeadE<br>TraiE | 2.00ns 50 $\Omega$ in =LeadE | to 50.0Ω         | mV      |
| MODE/J         | TRG OUTPUT 1                 | OUTPUT 2         | PATTERN |

| Per            | 100.0ms Normal OFF                          | 2 CMODIFY   |
|----------------|---------------------------------------------|-------------|
| Delay          | 75.00ms High +0.0m                          | v -100      |
| Width<br>LeadE | 50.00ms Low $-100m$<br>2.00ns 50Ω into 50.0 | $\Omega$ mV |
| TraiE          | =LeadE Separate Out2                        |             |
| MODE/1         | TRG OUTPUT 1 OUTPUT                         | 2 PATTERN   |

Рисунок 110

8.9.1.1.6 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 28:

| Таблица 28        |                               |
|-------------------|-------------------------------|
| Уровень выходного | Допустимый диапазон изменения |
| сигнала, B (low)  | уровня выходного сигнала      |
| -0,1              | от -48 мВ до -152 мВ          |
| -0.5              | от -440 мВ до -560 мВ         |
| -1.0              | от -0,93 В до -1,07 В         |
| -3.00             | от -2,92 В до -3,08 В         |
| -5.00             | от -4,90 В до -5,10 В         |
| -10,00            | от -9,85 В до -10,15 В        |
|                   |                               |

8.9.1.1.7 Результаты проверки считать удовлетворительными, если значения выходного уровня сигнала соответствуют указанным в таблицах 27 и 28.

8.9.1.2 Определение значения диапазона устанавливаемого напряжения и погрешности устанавливаемого напряжения 1кОм на 50 Ом

8.9.1.2.1 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 111 и 112:

![](_page_54_Picture_7.jpeg)

Рисунок 111

| Per                              | 100.0ms Normal                                                | <sup>off</sup> 2                          | MODIFY             |
|----------------------------------|---------------------------------------------------------------|-------------------------------------------|--------------------|
| Delay<br>Width<br>LeadE<br>TraiE | 25.00ms High<br>50.00ms Low<br>2.00ns 1kΩ in<br>=LeadE Separa | +20.0V<br>+0.0mV<br>nto 50.0Ω<br>ate Out2 | +20. <u>0</u><br>v |
| MODE/1                           | PRG OUTPUT 1                                                  | о <b>итрит 2</b><br>ок 112                | PATTERN            |

8.9.1.2.2 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 29:

| Допустимый диапазон   |
|-----------------------|
| выходного напряжения  |
| от 18,71 В до 19,29 В |
| от 9,80 В до 10,20 В  |
| от 4,85мВ до 5,15 мВ  |
| от 0,89 В до 1.11 В   |
| от 98 мВ до 302 мВ    |
|                       |

8.9.1.2.3 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 113 и 114:

| Per                     | 100.0ms Normal                               | <sup>on</sup> 1              | MODIFY       |
|-------------------------|----------------------------------------------|------------------------------|--------------|
| Delay<br>Width<br>LeadE | 75.00ms High<br>50.00ms Low<br>2.00ns 1kΩ in | +0.0mV<br>-200mV<br>to 50.0Ω | -20 <u>0</u> |
| TraiE                   | =LeadE                                       |                              |              |
| MODE/1                  | TRG OUTPUT 1                                 | OUTPUT 2                     | PATTERN      |

Рисунок 113

| Per                         | 100.0ms Normal                                  | <sup>off</sup> 2             | MODIFY                |
|-----------------------------|-------------------------------------------------|------------------------------|-----------------------|
| <br>Delay<br>Width<br>LeadE | 75.00ms High 50.00ms Low 2.00ns 1k $\Omega$ int | +0.0mV<br>-200mV<br>to 50.0Ω | -200<br><sup>mv</sup> |
| TraiE<br>MODE/I             | =LeadE_Separat                                  | ce Out2<br>OUTPUT 2          | PATTERN               |

Рисунок 114

8.9.1.2.4 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 30:

| Таблица 30        |                         |
|-------------------|-------------------------|
| Уровень выходного | Допустимый диапазон     |
| сигнала, B (low)  | выходного напряжения    |
| -19,0 B           | от -18,71 В до -19,29 В |
| -10,0 B           | от -9,80 В до -10,20 В  |
| -5,0 B            | от -4,85мВ до -5,15 мВ  |
| -1.0 B            | от -0,89 В до -1,11 В   |
| -0.2 B            | от -98 мВ до -302 мВ    |
|                   |                         |

8.9.1.2.5 Результаты проверки считать удовлетворительными, если значения выходного уровня сигнала соответствуют указанным в таблицах 29 и 30. 8.9.2 Определение значения диапазона устанавливаемого напряжения и погрешности устанавливаемого напряжения 81112А

8.9.2.1 Соединить генератор и цифровой мультиметр в соответствии с рисунком 115:

![](_page_56_Figure_2.jpeg)

![](_page_56_Figure_3.jpeg)

8.9.2.2 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 116 и 117:

| Per                      | 100.0ms Normal              | on<br>off 1      | MODIFY  |
|--------------------------|-----------------------------|------------------|---------|
| Delay<br>Width           | 25.00ms High<br>50.00ms Low | +3.80V<br>+0.0mV | +3.80   |
| LeadE<br>TraiE<br>MODE/1 | =LeadE                      | OUTPUT 2         | PATTERN |

Рисунок 116

| Per                              | 100.0ms Normal                                  | off 2            | MODIFY        |
|----------------------------------|-------------------------------------------------|------------------|---------------|
| Delay<br>Width<br>LeadE<br>TraiE | 25.00ms High<br>50.00ms Low<br>0.80ns<br>=LeadE | +3.80V<br>+0.0mV | +3.8 <u>0</u> |
| MODE/7                           | TRG OUTPUT 1                                    | OUTPUT 2         | PATTERN       |

Рисунок 117

8.9.2.3 Установить следующие параметры цифрового мультиметра:

Function: DCV

e \*

Trigger: TRIG EXT

AD-Converter integration time NPLC: 0.1

8.9.2.4 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 31:

Таблица 31

| Уровень выходного | Допустимый диапазон   |
|-------------------|-----------------------|
| сигнала, B (high) | выходного напряжения  |
| 3.80 B            | от 3,674 В до 3,926 В |
| 1,0 B             | от 0,93 В до 1,07 В   |

| 0,5 B | от 440 мВ до 560 мВ |
|-------|---------------------|
| 0,1 B | от 48 мВ до 152 мВ  |

8.9.2.5 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 118 и 119:

![](_page_57_Figure_2.jpeg)

Рисунок 119

8.9.2.6 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 32:

Таблица 32Уровень выходного<br/>сигнала, В (low)Допустимый диапазон изменения<br/>уровня выходного сигнала-0,1от -48 мВ до -152 мВ-0,5от -440 мВ до -152 мВ-1,0-0,93 В до -1,07 В-2,00-1,910 В до -2,090 В

8.9.2.7 Результаты проверки считать удовлетворительными, если значения выходного уровня сигнала соответствуют указанным в таблицах 31 и 32.

8.9.3 Определение значения диапазона устанавливаемого напряжения и погрешности устанавливаемого напряжения 81131А

8.9.3.1 Соединить генератор и цифровой мультиметр в соответствии с рисунком 120:

![](_page_58_Figure_0.jpeg)

Рисунок 120

8.9.3.2 На генераторе нажать клавишу MORE и установить характеристики в соответствии с рисунком 121:

| CONTINUOUS Pattern of                              | MODIFY                         |
|----------------------------------------------------|--------------------------------|
| Pulses Out 1: NRZ Out2: NRZ<br>PRBS Polynom: 2^7-1 | PulseStrm<br>Burst<br>*Pattern |
| Trigger Output at: Each Clock                      |                                |
| MODE/TRG OUTPUT 1 OUTPUT 2                         | PATTERN                        |

Рисунок 121

8.9.3.3 На генераторе включить экран [**Pattern**] и установить характеристики в соответствии с рисунком 122:

| Segment | Lenght  | Loopcnt | Update | MODIFY  |
|---------|---------|---------|--------|---------|
| 1       | 65504 🕴 | 1       |        | 65504   |
| 2       |         |         |        | 00004   |
| 3       |         |         |        |         |
| 4       | _       |         |        |         |
| MODE/TF | G OUTPU | JT 1 OU | TPUT 2 | PATTERN |

Рисунок 122

8.9.3.4 Навести курсор на цифру 1 и нажать клавишу ENTER, как показано на рисунке 123:

| Update       | CMODIFY                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------|
| Length 65504 | Data Seg<br>*High Seg                                                                               |
|              | Low Seg                                                                                             |
|              | PRBS Seg                                                                                            |
| ן<br>ר<br>ני | Length 65504   1 1 1 1   0 0 0 0   1 1 1 1   0 0 0 0   1 1 1 1   0 0 0 0   1 1 1 1   PUT 1 OUTPUT 2 |

Рисунок 123

8.9.3.5 На генераторе нажать клавишу MORE и установить значения выходного сигнала генератора [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 124 и 125:

![](_page_59_Figure_1.jpeg)

Рисунок 125

8.9.3.6 Установить следующие параметры цифрового мультиметра:

Function: DCV

Trigger: TRIG INT

8.9.3.7 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 33:

| Таблица 33        |                       |
|-------------------|-----------------------|
| Уровень выходного | Допустимый диапазон   |
| сигнала, B (high) | выходного напряжения  |
| 3.80 B            | от 3.678 В до 3.922 В |
| 1.0 B             | от 0.93 В до 1.07 В   |
| 0.5 B             | от 440 мВ до 560 мВ   |
| 0.1 B             | от 48 мВ до 152 мВ    |

8.9.3.8 На генераторе включить экран [**Pattern**] и установить характеристики в соответствии с рисунком 126:

![](_page_59_Figure_9.jpeg)

Рисунок 126

8.9.3.9 На генераторе нажать клавишу MORE и установить значения выходного сигнала генератора [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 127 и 128:

| Frec           | 170.0kHz    | on<br>off 1      | MODIFY  |
|----------------|-------------|------------------|---------|
| Delay<br>Width | 0.00ps High | +0.0mV<br>-100mV | -100    |
| LeadE          | 0.80ns      |                  | mV      |
| TraiE          | =LeadE      |                  |         |
| MODE/T         | RG OUTPUT 1 | OUTPUT 2         | PATTERN |

Рисунок 127

| Freq                             | 170.0kHz                                      | on<br>off 2                 | MODIFY                        |
|----------------------------------|-----------------------------------------------|-----------------------------|-------------------------------|
| Delay<br>Width<br>LeadE<br>TraiE | 0.00ps High<br>Low<br>0.80ns<br>=LeadE Separa | +0.0mV<br>-100mV<br>te Out2 | - <u>100</u><br><sub>mv</sub> |
| MODE/T                           | RG OUTPUT 1                                   | OUTPUT 2                    | PATTERN                       |
|                                  |                                               | Рисунок                     | 128                           |

8.9.3.10 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 34:

| Таблица 34        |                               |
|-------------------|-------------------------------|
| Уровень выходного | Допустимый диапазон изменения |
| сигнала, B (low)  | уровня выходного сигнала      |
| -0.1              | от -48 мВ до -152 мВ          |
| -0.5              | от -440 мВ до -560 мВ         |
| -1.0              | -0.93 В до -1.07 В            |
| -2.00             | -1.910 В до -2.090 В          |

8.9.3.11 Результаты проверки считать удовлетворительными, если значения выходного уровня сигнала соответствуют указанным в таблицах 33 и 34.

8.9.4 Определение значения диапазона устанавливаемого напряжения и погрешности устанавливаемого напряжения 81132А

8.9.4.1 Соединить генератор и цифровой мультиметр в соответствии с рисунком 129:

![](_page_60_Figure_8.jpeg)

![](_page_60_Figure_9.jpeg)

8.9.4.2 На генераторе нажать клавишу MORE и установить характеристики в соответствии с рисунком 130:

| CONTINUOUS Pattern of                              | MODIFY             |
|----------------------------------------------------|--------------------|
| Pulses Out 1: NRZ Out2: NRZ<br>PRBS Polynom: 2^7-1 | PulseStrm<br>Burst |
| Trigger Output at: Each Clock                      | *Pattern           |
| MODE/TRG OUTPUT 1 OUTPUT 2                         | PATTERN            |

## Рисунок 130

8.9.4.3 На генераторе включить экран [**Pattern**] и установить характеристики в соответствии с рисунком 131:

| Segment | Lenght  | Loopent | Update | MODIFY  |
|---------|---------|---------|--------|---------|
| 1       | 65504   | 1       |        | 65504   |
| 2       |         |         |        |         |
| 3       |         |         |        |         |
| 4       | _       |         |        |         |
| MODE/TF | G OUTPU | JT 1 OU | TPUT 2 | PATTERN |

Рисунок 131

8.9.4.4 Навести курсор на цифру 1 и нажать клавишу ENTER, как показано на рисунке 132:

| Segment  | 1 |     | UI | pda | ate | 9 |    |               |   | CMODIFY   |
|----------|---|-----|----|-----|-----|---|----|---------------|---|-----------|
| Address  |   |     | Le | eng | ſtŀ | ì | (  | 6550 <i>-</i> | 4 | Data Seg  |
| CH1 High |   | 1   | 1  | 1   | 1   | 1 | 1  | 1             |   | *High Seg |
| CH2 Low  |   | 0   | 0  | 0   | 0   | 0 | 0  | 0             |   | Low Seg   |
| Both     |   | 1   | 1  | 1   | 1   | 1 | 1  | 1             |   | PRBS Seg  |
| MODE/TRG | σ | JTF | UT | ' 1 |     | 0 | UT | PUT           | 2 | PATTERN   |

![](_page_61_Figure_7.jpeg)

8.9.4.5 На генераторе нажать клавишу MORE и установить значения выходного сигнала генератора [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 133 и 134:

| Frec           | 170.0kHz           | on<br>off 1      | CMODIFY       |
|----------------|--------------------|------------------|---------------|
| Delay<br>Width | 0.00ps High<br>Low | +2.50V<br>+0.0mV | +2.5 <u>0</u> |
| MODE/I         | RG OUTPUT 1        | OUTPUT 2         | PATTERN       |
|                |                    | Рисунок 133      |               |

62

| Fred           | 170.0kHz           | on off 2         | C MODIFY      |
|----------------|--------------------|------------------|---------------|
| Delay<br>Width | 0.00ps High<br>Low | +2.50V<br>+0.0mV | +2.5 <u>0</u> |
| T              | Separa             | te Out2          | ·             |
| MODE/T         | RG OUTPUT 1        | OUTPUT 2         | PATTERN       |

Рисунок 134

8.9.4.6 Установить следующие параметры цифрового мультиметра:

Function: DCV

Trigger: TRIG INT

8.9.4.7 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 35:

Таблица 35

| Уровень выходного | Допустимый диапазон   |
|-------------------|-----------------------|
| сигнала, B (high) | выходного напряжения  |
| 2.50 B            | от 2.325 В до 2.675 В |
| 1.0 B             | от 0.9 В до 1.1 В     |
| 0.5 B             | от 425 мВ до 575 мВ   |
| 0.1 B             | от 45 мВ до 155 мВ    |

8.9.4.8 На генераторе включить экран [**Pattern**] и установить характеристики в соответствии с рисунком 135:

| Segment  | 1  | U    | pd  | ate | € |    |      | C MODIFY   |
|----------|----|------|-----|-----|---|----|------|------------|
| Address  |    | L    | enç | gth | ì | (  | 6550 | 4 Data Seg |
| CH1 High |    | 00   | 0   | 0   | 0 | 0  | 0    | High Seg   |
| CH2 Low  |    | 00   | 0   | 0   | 0 | 0  | 0    | *Low Seg   |
| Both     |    | 00   | 0   | 0   | 0 | 0  | 0    | PRBS Seg   |
| MODE/TRG | ot | JTPU | r 1 | •   | 0 | UT | PUT  | 2 PATTERN  |

![](_page_62_Figure_10.jpeg)

8.9.4.9 На генераторе нажать клавишу MORE и установить значения выходного сигнала генератора [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 136 и 137:

| Freq           | 170.0kHz           | on off 1         | C MODIFY                      |
|----------------|--------------------|------------------|-------------------------------|
| Delay<br>Width | 0.00ps High<br>Low | +0.0mV<br>-100mV | - <u>100</u><br><sub>mv</sub> |
| MODE/T         | RG OUTPUT 1        | OUTPUT 2         | PATTERN                       |

Рисунок 136

![](_page_63_Figure_0.jpeg)

Рисунок 137

8.9.4.10 Измерить выходной уровень сигнала генератора, устанавливая параметры генератора в соответствии с таблицей 36:

| Таблица 36        |                               |
|-------------------|-------------------------------|
| Уровень выходного | Допустимый диапазон изменения |
| сигнала, B (low)  | уровня выходного сигнала      |
| -0.1              | от -45 мВ до -155 мВ          |
| -0.5              | от -425 мВ до <b>-</b> 575 мВ |
| -1.0              | -0.90 В до -1.10 В            |
| -2.00             | -1.850 В до -2.150 В          |

8.9.4.11 Результаты проверки считать удовлетворительными, если значения выходного уровня сигнала соответствуют указанным в таблицах 35 и 36.

8.10 Определение времени нарастания/спада и погрешности времени нарастания/спада сигнала

8.10.1 Определение времени нарастания/спада и погрешности времени нарастания/спада сигнала 81111А

8.10.1.1 Соединить генератор и осциллограф в соответствии с рисунком 138:

Генератор

![](_page_63_Figure_9.jpeg)

Аттенюаторы 20 дБ

Осциплограф

Рисунок 138

8.10.1.2 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 139 и 140:

| Per                               | 500.0µs Normal ON 1 CMODIFY                                                                                           |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Delay<br>DtyCyc<br>LeadE<br>TraiE | Ops Offset   +0.0mV   2.00     50.00% Amplit   5.00V   2.00     2.00ns   50Ω into 50.0Ω   ns     =LeadE   1000   1000 |
| MODE/T                            | RG OUTPUT 1 OUTPUT 2 PATTERN                                                                                          |

Рисунок 139

| Per                      | 500.0µs Normal OFF 2 MODIFY                                                                  |
|--------------------------|----------------------------------------------------------------------------------------------|
| Delay<br>DtyCyc<br>LeadE | Ops Offset   +0.0mV   2.00mV     50.00% Amplit   5.00V   2.000     2.00ns   50Ω into   50.0Ω |
| TraiE                    | =LeadE Separate Out2                                                                         |
| MODE/I                   | RG OUTPUT 1 OUTPUT 2 PATTERN                                                                 |

Рисунок 140

8.10.1.3 Установить параметры осциллографа Agilent 54121Т:

8.10.1.3.1 Нажать клавишу AUTOSCALE

8.10.1.3.2 Установить отклик сигнала на экране осциллографа по центру

8.10.1.3.3 Установить количество усреднений равное 32

8.10.1.3.4 Установить значение ослабления канала 1 равное 10

8.10.1.3.5 Включить маркер напряжения

8.10.1.3.6 Установить начальный уровень равным 10-90% и нажать клавишу AUTO LEVEL SET

8.10.1.3.7 Установить время развертки равным 1 нс/дел и время задержки DELAY равное 19.5 нс

8.10.1.3.8 Включить маркер времени

8.10.1.3.9 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1

8.10.1.3.10 Нажать клавишу PRECISE EDGE FIND

8.10.1.4 Установить период следования импульсов генератора: Period = 1 мкс и изменяя значение времени задержки генератора установить отображаемый первый импульс по центру экрана осциллографа

8.10.1.5 После усреднения, когда осциллограф перейдет в меню Delta t, нажать клавишу PRECISE EDGE FIND

8.10.1.6 Измерить значения времени спада/нарастания импульса сигнала в соответствии с таблицей 37:

Таблица 37

| Значение    | Значение | Значение | Значение  | Значение | Допустимый диапазон вре-    |
|-------------|----------|----------|-----------|----------|-----------------------------|
| TIME/ DIV   | времени  | периода  | переднего | заднего  | мени нарастания/спада им-   |
|             | задержки | _        | фронта    | фронта   | пульса                      |
|             | -        |          | импульса  | импульса |                             |
| 2 нс/лел    | 529 нс   | 1 мкс    | 2 нс      | 2 нс     | от 2 нс до 2.4 нс           |
| 5 нс/дел    | 529 нс   | 1 мкс    | 5 нс      | 10 нс    | от 8.8 нс до 11.2 нс        |
| 10 нс/лел   | 529 нс   | 1 мкс    | 50 нс     | 50 нс    | от 44.8 нс до 55.2 нс       |
| 100 нс/дел  | 25 мкс   | 5 мкс    | 500 нс    | 500 нс   | от 449.8 нс до 550.2 нс     |
| 1 мкс/лел   | 25 мкс   | 50 мкс   | 5 мкс     | 5 мкс    | от 4.4998 мкс до 5.5002 мкс |
| 10 мкс/дел  | 250 мкс  | 500 мкс  | 50 мкс    | 50 мкс   | от 45 мкс до 55 мкс         |
| 100 мкс/лел | 2.5 мс   | 5 мс     | 500 мкс   | 500 мкс  | от 450 мкс до 550 мкс       |
| 10 мс/дел   | 250 мс   | 500 мс   | 50 мс     | 50 мс    | от 45 мс до 55 мс           |

8.10.1.7 Результаты проверки считать удовлетворительными, если они соответствуют значениям, указанным в таблице 37.

8.10.2 Определение времени нарастания/спада и погрешности времени нарастания/спада сигнала 81112А

8.10.2.1 Соединить генератор и осциллограф в соответствии с рисунком 141:

![](_page_65_Figure_1.jpeg)

![](_page_65_Figure_2.jpeg)

![](_page_65_Figure_3.jpeg)

8.10.2.2 На генераторе нажать клавишу MORE и установить [OUTPUT 1] и [OUTPUT 2] в соответствии с рисунками 142 и 143:

| Per 50                          | 0.0µs Normal 0                                          | FF 1                       | MOI               | DIFY                      |
|---------------------------------|---------------------------------------------------------|----------------------------|-------------------|---------------------------|
| Delay                           | Ops Offset                                              | +0.0mV                     | *0.8r             | IS                        |
| DtyCyc                          | 50.00% Amplit                                           | 3.80V                      | 1.6r              | is                        |
| LeadE                           | 0.80ns                                                  |                            |                   |                           |
| TraiE                           | =LeadE                                                  |                            |                   |                           |
| MODE/TRG                        | OUTPUT 1 OUT                                            | PUT 2                      | PATT              | YERN                      |
|                                 | Рису                                                    | нок 142                    |                   |                           |
|                                 |                                                         |                            |                   |                           |
| Per                             | 500.0µs Normal                                          | OFF<br>OFF                 | 2                 | MODIFY                    |
| Per                             | 500.0µs Normal<br>Ops Offset                            | OFF<br>OFF<br>t +0         | 2<br>. OmV        | MODIFY                    |
| Per<br>Delay<br>DtyCyc          | 500.0µs Normal<br>Ops Offset<br>50.00% Amplit           | OFF<br>OFF<br>t +0<br>t 3. | 2<br>. 0mv<br>80v | MODIFY<br>*0.8ns<br>1.6ns |
| Per<br>Delay<br>DtyCyc<br>LeadE | 500.0µs Normal<br>Ops Offset<br>50.00% Amplit<br>0.80ns | OFF<br>OFF<br>+0<br>- 3.   | 2<br>. 0mv<br>80v | MODIFY<br>*0.8ns<br>1.6ns |

Рисунок 143

OUTPUT 1 OUTPUT 2

8.10.2.3 Установить параметры осциллографа Agilent 54121Т:

8.10.2.3.1 Нажать клавишу AUTOSCALE

MODE/TRG

8.10.2.3.2 Установить отклик сигнала на экране осциллографа по центру

8.10.2.3.3 Установить количество усреднений равное 32

8.10.2.3.4 Установить значение ослабления канала 1 равное 10

8.10.2.3.5 Включить маркер напряжения

8.10.2.3.6 Установить начальный уровень равным 10-90% и нажать клавишу AUTO LEVEL SET

PATTERN

8.10.2.3.7 Установить время развертки равным 1 нс/дел и время задержки DELAY равное 16 нс

8.10.2.3.8 Включить маркер времени

8.10.2.3.9 Установить START ON EDGE = POS1 и STOP ON EDGE = POS1

8.10.2.3.10 Нажать клавишу PRECISE EDGE FIND

8.10.2.4 Установить период следования импульсов генератора: Period = 1 мкс и изменяя значение времени задержки генератора установить отображаемый первый импульс по центру экрана осциллографа 8.10.2.5 После усреднения, когда осциллограф перейдет в меню Delta t, нажать клавишу PRECISE EDGE FIND

8.10.2.6 Измерить значения времени спада/нарастания импульса сигнала в соответствии с таблицей 38:

Таблица 38

| Значение  | Значение | Значение переднего | Значение заднего | Допустимый диапазон вре- |
|-----------|----------|--------------------|------------------|--------------------------|
| TIME/ DIV | периода  | фронта импульса    | фронта импульса  | мени нарастания/спада    |
|           |          |                    |                  | импульса                 |
| 1 нс/дел  | 1 мс     | 0.8 нс             | 0.8 нс           | от 540 пс до 1,080 нс    |
| 1 нс/дел  | 1 мс     | 1.6 нс             | 1.6 нс           | от 1.240 нс до 1,960 нс  |

8.10.2.7 Результаты проверки считать удовлетворительными, если они соответствуют значениям, указанным в таблице 38.

### 9 Оформление результатов поверки

9.1 При положительных результатах поверки на анализатор выдается свидетельство установленной формы.

9.2 На оборотной стороне свидетельства о поверке записываются результаты поверки.

9.3 В случае отрицательных результатов поверки поверяемый анализатор к дальнейшему применению не допускается. На него выдается извещение о непригодности к дальнейшей эксплуатации с указанием причин забракования.

Зам. Начальника НИО-1 ФГУП «ВНИИФТРИ»

О.В. Каминский