

АППАРАТУРА МНОГОКАНАЛЬНАЯ ИЗМЕРИТЕЛЬНАЯ УПРАВЛЯЮЩАЯ

«Spider-80x» Методика поверки МП 254-0025-2014 1.р.60894-15

Руководитель НИЛ 2064 ГЦИ СИ ФГУП «ВНИИМ им. Д.М. Менделеева» В.П. Пиастро «29» января 2045 г.

Руководитель НИЛ ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева» С.А.Кочарян «29» января 2015 г.

Санкт-Петербург 2015 г. Настоящая методика поверки распространяется на аппаратуру многоканальную измерительную управляющую «Spider-80х» (далее – Spider-80х), предназначенную для измерений амплитуды и частоты сигналов напряжения переменного тока, поступающих от первичных измерительных преобразователей механических, тепловых, акустических, геометрических физических величин (датчиков), и формирования выходных сигналов автоматического управления вибрационным испытательным оборудованием с заданным соотношением входных/выходных сигналов и устанавливает методику первичной и периодической поверок Spider-80х.

При проведении поверки необходимо использовать Руководство по эксплуатации Spider-80x.

Интервал между поверками - 3 года.

Метрологические характеристики Spider-80х приведены в таблице А.1 Приложения А.

1 Операции поверки

1.1 При проведении поверки Spider-80х должны быть выполнены операции, указанные в таблице 1.

Таблица 1

	Номер пункта	Проведение	операции при	
Наименование операции	методики	первичной	периодической	
	поверки	поверке	поверке	
1 Внешний осмотр	7.1	да	да	
2 Опробование	7.2	да	да	
3 Проверка программного обеспечения	7.3	да	да	
4 Определение метрологических				
характеристик каналов:				
- проверка диапазона и определение				
относительной погрешности измерений	7.4.1	да	да	
амплитуды сигналов напряжения				
переменного тока;				
- проверка диапазона и определение				
относительной погрешности измерений	7.4.2	да	да	
частоты сигналов напряжения				
переменного тока;				
- проверка диапазона и определение				
относительной погрешности	7.4.3	да	да	
воспроизведения сигналов напряжения				
переменного тока.				

1.2 При отрицательных результатах одной из операций, указанных в таблице 1, поверка прекращается.

2 Средства поверки

2.1 При проведении поверки должны быть применены средства поверки и оборудование, указанные в таблице 2.

Таблица 2

Номер пункта методики	Наименование, тип основного и вспомогательного средства поверки; обозначение нормативного документа, регламентирующего техниче- ские требования и (или) метрологические и основные технические характеристики средства поверки
7.2, 7.3, 7.4.1-7.4.3	IBM-совместимый персональный компьютер, с сетевым интерфей- сом Ethernet (поддерживающий протоколы IPv4 (ICMP, IP, UDP, TCP, IGMP) и операционной системой не ниже Microsoft Windows XP SP2, наличие Windows Installer 4.5
7.4.1	Калибратор универсальный H4-7, диапазон воспроизведения напряжения переменного тока: от 10 мкВ до 20 В, пределы допускаемой основной относительной погрешности в диапазоне частот: от 0,1 Гц до 20 кГц \pm (0,004%U _x + 0,0004%U _n), от 20 до 50 кГц, \pm (0,008 % U _x + 0,0008 % U _n).
7.4.2	Калибратор универсальный H4-7, диапазон воспроизведения напряжения переменного тока: от 10 мкВ до 20 В, пределы допускаемой основной относительной погрешности в диапазоне частот: от 0,1 Гц до 20 кГц \pm (0,004%U _x + 0,0004%U _n), от 20 до 50 кГц, \pm (0,008 % U _x + 0,0008 % U _n). Частотомер электронно-счетный Ч3-85/3, диапазон измерений часто- ты от 0,01 Гц до100 МГц, пределы допускаемой абсолютной по- грешности: $\delta_F = \pm (\delta_0 + 7 \cdot 10^{-9}/t_{cy})$
7.4.3	Мультиметр 34401А, диапазон измерений напряжения переменного тока от 1 до 750 В, пределы допускаемой относительной погрешности: $\pm (0,06\% U_x + 0,03\% U_k)$.

2.2 Все средства измерений, перечисленные в таблице 2, должны иметь необходимую эксплуатационную документацию, действующие свидетельства о поверке (или оттиски клейм поверки в установленных местах).

2.3 Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик измерительных каналов Spider-80х с требуемой точностью.

3 Требования к квалификации поверителей

К проведению поверки допускаются лица, аттестованные в установленном порядке в качестве поверителей, с правом поверки средств измерений электрических величин, ознакомившиеся с руководством по эксплуатации на Spider-80х и настоящей методикой.

4 Требования безопасности

4.1 При проведении поверки необходимо руководствоваться общими правилами техники безопасности, производственной санитарии, охраны окружающей среды и указаниями по технике безопасности, содержащимися в эксплуатационной документации на Spider-80х и средства поверки.

4.2 При проведении поверки должны быть соблюдены требования:

- ГОСТ 12.1.030-81 «Электробезопасность. Защитное заземление, зануление»;

- ГОСТ 12.3.019-80 «Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности»;

- «Правил техники безопасности при технической эксплуатации электроустановок потребителей до 1 кВт», утвержденных Госэнергонадзором;

- Инструкций по технике безопасности для конкретного рабочего места.

5 Условия поверки

5.1 При проведении поверки должны быть соблюдены следующие нормальные условия по ГОСТ 8.395-80:

- температура окружающего воздуха (20±5) °С;

- относительная влажность воздуха от 45 до 80 %;

- атмосферное давление от 84 до 106,7 кПа.

Электропитание:

- напряжение переменного тока, при частоте от 47 до 440 Гц от 100 до 240 В

- напряжение постоянного тока от 13,5 до 16,5 В.

6 Подготовка к поверке

6.1 Перед проведением поверки необходимо выполнить следующие работы:

- выдержать поверяемый Spider-80х в выключенном состоянии не менее двух часов в условиях, указанных в пункте 5.1;

- подготовить к работе средства поверки и поверяемый Spider-80x в соответствии с требованиями эксплуатационных документов на них.

7 Проведение поверки

7.1 Внешний осмотр

7.1.1 При внешнем осмотре должно быть установлено соответствие Spider-80х следующим требованиям:

- наличие эксплуатационной документации, свидетельства о предыдущей поверке;

- наличие комплектации Spider-80х в соответствии с РЭ;

- наличие маркировки Spider-80х в соответствии с представленной документацией;

- отсутствие видимых механических повреждений, дефектов лакокрасочных покры-

тий, загрязнения корпуса, влияющих на работоспособность и метрологические характеристики.

Результаты внешнего осмотра считать положительными, если Spider-80x соответствует требованиям, приведенным в 7.1.1.

7.2 Опробование

Опробование работы Spider-80х выполняется следующим образом:

- согласно РЭ подключить Spider-80х к компьютеру и запустить программу EDM от имени администратора. Дождаться появления подтверждения подключения Spider-80х и проверить соответствие серийного номера подключенного модуля, серийному номеру, указанному на шильде размещенном на верхней крышке Spider-80х, рисунки 1 и 2 соответственно;

Рисунок 1. Стартовое окно EDM с указанием подключенных устройств.

Рисунок 2. Шильд модуля Spider80х на верхней крышке.

- в стартовом окне EDM выбрать режим Dynamic Signal Analysis / FFT Spectral Analysis – настроить новое испытание по умолчанию согласно РЭ, рисунок 3;

Рисунок 3. Вид базового окна нового испытания.

- нажать кнопку RUN и наблюдать реакцию на мониторе PC - на рабочем экране должны появиться временные графики и частотный спектр сигналов на входе каналов (шум холостого хода каналов/наводка с линий связи со средствами поверки).

7.3 Проверка программного обеспечения

7.3.1 Для вычисления цифровых идентификаторов ПО использовать алгоритм криптографического хеширования MD5 checksum. Расчет контрольных сумм исполняемых кодов ПО выполнять с использованием программы: «Агрооп Checksum 1.6».

Таолица 5	
Идентификационные данные (признаки)	Значение
Идентификационное наимено- вание автономного ПО	Engineering Data Management (EDM)
Номер версии (идентификаци- онный номер) автономного ПО	4.2.0.3 (не ниже)
Цифровой идентификатор ав- тономного ПО	1605f7db16d75934bdf6feb9a5f5e3c6; алгоритм MD5 checksum
Идентификационное наимено- вание встроенного ПО	DSP application
Номер версии (идентификаци- онный номер) встроенного ПО	Соответствует версии автономного ПО
Цифровой идентификатор встроенного ПО	Отсутствует

7.3.2 Результаты проверки считать положительными, если идентификационные данные программного обеспечения соответствуют данным, приведенным в таблице 3.

7.4 Определение метрологических характеристик

7.4.1 Проверка диапазона и определение относительной погрешности измерений амплитуды сигналов напряжения переменного тока.

Проверку диапазона измерений амплитуды напряжения сигналов переменного тока и определение погрешности выполнить следующим образом:

7.4.1.1 Настроить ПО EDM: В программе Dynamic Signal Analysis / FFT Spectral Analysis настроенной в п.7.2 по умолчанию закрыть все окна с временными сигналами и огибающей профиля (окно частотного спектра остается открытым), рисунок 5.

Рисунок 5.

7.4.1.2 Открыть окно Channel Status сочетанием клавиш CTRL+5 или советующей кнопкой в меню View и настроить окна для удобного просмотра информации, рисунок 6.

Рисунок 6.

7.4.1.3 Щелчком правой кнопки мыши в окне спектра частоты (APS(Ch1,Ch2....Chn)) активировать функцию вертикального курсора (vertical cursor) или пиковых маркеров(peak

Рисунок 7.

7.4.1.4 Сочетанием клавиш CTRL+I (или меню Setup->Input Channels) проверить правильность настройки входных каналов, рисунок 8:

- активировать все доступные каналы (каналы подлежащие поверке);

- установить тип измеряемой величины (Measurement quantity) -- Напряжение/ Voltage;

- установить чувствительность 1000мВ/В – т.е 1 к 1;

- установить тип входа – переменный ток, не симметричный (AC-Single End);

Подтвердить настройки клавишей ОК.

• Ev/	lm • Unis	Sensor • Load from	library Save to library	Save as default				
/off	Location ID	Measurement quantity	Sensitivity	Input mode		Sensor		High-Pass filter Fc (Hz)
√ On	Ch1	Voltage 💌	1000,0000 (mV/V)	AC-Single End	-			off
🖉 On	Ch2	Voltage 🗸 🔻	1000,0000 (mV/V)	AC-Single End	•		-	Off
🖉 On	Ch3	Voltage 🔻	1000,0000 (mV/V)	AC-Single End	•		-	Off
Z On	Ch4	Voltage 🗸 🗸	1000,0000 (mV/V)	AC-Single End			-	off
Ø On	Ch5	Voltage 🔻	1000,0000 (mV/V)	AC-Single End	•	Lina Londa	•	Off
/ On	Ch6	Voltage 🔻	1000,0000 (mV/V)	AC-Single End	•		-	Off
V On	Ch7	Voltage 🗸 🔻	1000,0000 (mV/V)	AC-Single End	•		•	Off
/ On	Ch8	Voltage 🗸 🔻	1000,0000 (mV/V)	AC-Single End	-		•	Off

10

Рисунок 8

7.4.1.5 Нажать клавишу RUN, подтвердить правильность настроек (нажать ОК в появившемся окне), система готова к поверке (при запусках после установки ПО система может запросить синхронизацию с ПЭВМ и обновление сигнального процессора – данные процедуры можно пропустить).

7.4.1.6 Определение погрешности выполнить не менее чем в 5 точках U_i, равномерно распределенных в пределах диапазона измерений амплитуды.

7.4.1.7 На вход выбранного канала подключить калибратор универсальный Н4-7 (в режиме воспроизведения напряжения переменного тока в диапазоне: от 10 мкВ до 20 В).

7.4.1.8 В настройках входных сигналов EDM настроить следующие параметры:

На вкладке Input (рисунок 9, п.1) установить (рисунок 9, п.2):

- диапазон частот (frequency range): 11,25 Гц;

- размер блока/количество линий (Block size/Line): 32768/14400;

- тип окна (Window): Kaiser-Bessel;

- перекрытие (Overlap ratio): оставить по умолчанию;

- режим усреднения: оставить по умолчанию;

- количество усреднений: оставить по умолчанию.

Рисунок 9

7.4.1.9 Рассчитать действующие значения напряжения переменного тока U'_i, соответствующие выбранным значениям амплитуды U_i, по формуле:

$$U_{i}^{\bullet} = U_{i}/1,4142$$

7.4.1.10 На Н4-7 последовательно установить значения U^{*}_i при частоте выходного сигнала $F_1 = 10 \Gamma \mu$.

7.4.1.11 В каждой поверяемой точке диапазона U_i снять 5 отсчетов (U_{изм i})_s показаний по монитору подключенного к Spider-80x PC с установленной программой Engineering Data Management (EDM);

7.4.1.12 Вычислить среднее значение результата измерений амплитуды в і-той поверяемой точке диапазона по формуле:

$$(U_{\mu_{3M}i})_{cp} = \sum_{S=1}^{5} (U_{\mu_{3M}i})_{S}$$

7.4.1.13 За оценку абсолютной погрешности в і-той поверяемой точке диапазона ΔU_i принять значение, вычисляемое по формуле:

$$\Delta U_i = |(U_{\text{изм }i})_{cp} - U_i|$$

7.4.1.14 Определить относительную погрешность измерений амплитуды в i-той поверяемой точке диапазона δU_i, % по формуле:

$$\delta U_i = \frac{\Delta U_i}{U_i} \times 100\%$$

7.4.1.15 Повторить операции 7.4.1.6-7.4.1.14 на частотах выходного сигнала H4-7 $F_2 = 20 \ \kappa \Gamma \mu$ и $F_3 = 46 \ \kappa \Gamma \mu$, изменяя соответственно в настройках входных сигналов EDM диапазон частот на 23,04 $\kappa \Gamma \mu$ и 46,08 $\kappa \Gamma \mu$.

7.4.1.16 Повторить операции 7.4.1.6-7.4.1.15 для остальных аналоговых входных каналов Spider-80х.

7.4.1.17 Результаты поверки внести в протокол, форма которого приведена в приложении Б.

7.4.1.18 Результаты поверки Spider-80х в режиме измерений амплитуды напряжения переменного тока считать положительными, если ни одно из полученных значений относительной погрешности не превысило (по абсолютной величине) 0,5 %.

7.4.2 Проверка диапазона и определение относительной погрешности измерений частоты сигналов напряжения переменного тока.

7.4.2.1 Настроить систему согласно п.п. 7.4.1.1-7.4.1.5.

7.4.2.2 Определение погрешности выполнить не менее чем в 5 точках F_i, равномерно распределенных в пределах диапазона измерений частоты. При изменении частоты входного сигнала необходимо так же менять диапазон частот в настройках входных сигналов EDM.

7.4.2.3 На вход выбранного канала подключить калибратор универсальный Н4-7 (в режиме воспроизведения напряжения переменного тока в диапазоне: от 10 мкВ до 20 В), частоту выходного сигнала которого контролировать по показаниям подключенного к его выходу частотомера электронно-счетного Ч3-85/3.

7.4.2.4 На Н4-7 последовательно установить выбранные значения F_i при уровне выходного сигнала 5 В.

7.4.2.5 В каждой поверяемой точке диапазона і снять 5 отсчетов ($F_{\mu_{3M}}$), показаний по монитору подключенного к Spider-80x PC с установленной программой Engineering Data Management (EDM);

7.4.2.6 Вычислить среднее значение результата измерений частоты в і-той поверяемой точке диапазона по формуле:

$$(F_{H3M i})_{cp} = \sum_{S=1}^{5} (F_{H3M i})_{s}$$

7.4.2.7 За оценку абсолютной погрешности в i-той поверяемой точке диапазона Δ_{Fi} принять значение, вычисляемое по формуле:

$$\Delta F_i = |(F_{\mu_{3M}i})_{cp} - F_i|$$

7.4.2.8 Определить относительную погрешность измерений частоты в i-той поверяемой точке диапазона δ_{Fi}, % по формуле:

$$\delta F_i = \frac{\Delta F_i}{F_i} \times 100\%$$

7.4.2.9 Повторить операции 7.4.2.1-7.4.2.8 для остальных аналоговых входных каналов Spider-80х.

7.4.2.9 Результаты поверки внести в протокол, форма которого приведена в приложении В.

7.4.2.10 Результаты поверки Spider-80х в режиме измерений частоты напряжения переменного тока считать положительными, если ни одно из полученных значений приведённой погрешности не превысило (по абсолютной величине) 0,001 %.

7.4.3 Проверка диапазона и определение относительной погрешности воспроизведения сигналов напряжения переменного тока.

7.4.3.1 Для проверки диапазона и определения погрешности воспроизведения сигналов напряжения переменного тока необходимо создать новое испытание Sine Oscillator.

7.4.3.2 Определение погрешности выполнить не менее чем в 5 точках U_i, равномерно распределенных в пределах диапазона воспроизведения амплитуды выходного сигнала напряжения переменного тока.

Примечание: поскольку погрешность Spider-80х в этом режиме нормирована для части диапазона воспроизведения напряжения переменного тока, поверку производить только в диапазоне от 0,1 до 5 В (амплитудные значения).

7.4.3.3 Настроить программу Engineering Data Management (EDM) Sine Oscillator следующим образом:

Во вкладке Operations (рисунок 10 п. 1-2) настроить:

- Low Frequency (Hz): 0.1;

- High Frequency(Hz): 46000;

- Start Frequency(Hz): 0.1;
- Drive Limit (V): 10;
- Signal Plot Points: 4096;

Другие настройки меню Operations оставить без изменений, в меню Config установить минимальную и максимальную частоту сигнала 0 и 46000 Гц и максимальное напряжение 10В в соответствии с рисунком 11

Рисунок 10

Рисунок 11

7.4.3.4 Нажать кнопку RUN, далее при помощи регуляторов частоты и напряжения последовательно установить для выбранного аналогового выходного канала в окне программы значения U_i (рисунок 12).

7.4.3.5 При каждом установленном значении U_i снять 5 отсчетов ($U'_{\text{изм} i}$)s с подключенного к выходу Spider-80х мультиметра 34401А (в режиме измерений напряжения переменного тока в диапазоне от 1 до 750 В).

7.4.3.6 Для каждого отсчета мультиметра $(U_{_{H3M}i})_s$ рассчитать амплитудное значение $(U_{_{H3M}i})_s$ по формуле

$$(U_{\mu_{3M}i})_s = 1,4142(U_{\mu_{3M}i})_s$$

7.4.3.7 Вычислить среднее значение результата воспроизведения в і-той поверяемой точке диапазона по формуле

$$(U_{\mu_{3M}i})_{cp} = \sum_{S=1}^{5} (U_{\mu_{3M}i})_{s}$$

7.4.3.8 За оценку абсолютной погрешности воспроизведения сигналов напряжения переменного тока в i-той поверяемой точке диапазона ΔU_i принять значение, вычисляемое по формуле:

$$\Delta U_i = |(U_{H3M i})_{cp} - U_i|.$$

7.4.3.9 Определить относительную погрешность воспроизведения сигналов напряжения переменного тока в i-той поверяемой точке диапазона δU_i, % по формуле:

$$\delta U_i = \frac{\Delta U_i}{U_i} \times 100\%$$

7.4.3.10 Повторить операции 7.4.3.4-7.4.3.9 для второго аналогового выходного каналов Spider-80х.

7.4.3.11 Результаты поверки внести в протокол, форма которого приведена в приложении Г.

7.4.3.12 Результаты поверки Spider-80х в режиме воспроизведения сигналов напряжения переменного тока считать положительными, если ни одно из полученных значений относительной погрешности не превысило (по абсолютной величине) 1 %.

8 Оформление результатов поверки

8.1 Положительные результаты поверки Spider-80х оформить выдачей Свидетельства о поверке установленного образца в соответствии с ПР 50.2.006-94.

8.2 При отрицательных результатах поверки Свидетельство о поверке аннулировать, выдать Извещение о непригодности Spider-80х к дальнейшей эксплуатации с указанием причин.

ПРИЛОЖЕНИЕ А

Метрологические и технические характеристики Spider-80x

Таблица А.1

Наименование характеристики	Значение						
Диапазон измерений частот входных и выходных сигна-	свыше 0 до 46						
Пределы допускаемой относительной погрешности изме-	± 0,001						
Диапазон измерений входных сигналов напряжения пе- ременного тока, В (пик)	± 20						
Пределы допускаемой относительной погрешности измерений сигналов напряжения переменного тока, %	$\pm 0,5$						
Диапазон воспроизведения выходных сигналов напряже- ния переменного тока, В (пик)	± 10						
Пределы допускаемой относительной погрешности *вос- произведения выходных сигналов напряжения перемен- ного тока. %	± 1						
* Примечание: пределы допускаемой относительной погрешности воспроизведения выход- ных сигналов напряжения переменного тока нормированы только для диапа- зона от 0.1 до 5 В (пик).							

ПРИЛОЖЕНИЕ Б

Протокол поверки №

от "____ Г.

Наименование СИ	Аппаратура многоканальная измеритель- ная управляющая «Spider-80х»
Заводской номер СИ	
Заказчик	
Дата поверки	

Условия поверки:

- температура окружающего воздуха, ⁰С.....
- относительная влажность воздуха, %..... -
- атмосферное давление, кПа..... -
- Эталоны и испытательное оборудование: _____зав. № _____

(Свидетельство о поверке №_____ от ____г.)

Результаты поверки приведены в таблице 1.

Таблица 1 Канал № ____

Диапазон измерений амплитуды, В	U _i , B	(1	Ј _{изм} і) В	\$,	(U _{изм і}) _{ср,} В	ΔU _i , B	δ _{ui,} %	Пределы допускаемой относительной погрешности $\delta_{доп}$, %
								±

Выводы:_____

Поверку проводили:

ПРИЛОЖЕНИЕ В

Протокол поверки №

от "____г.

Наименование СИ	Аппаратура многоканальная измерительная управляющая «Spider-80х»
Заводской номер СИ	
Заказчик	
Дата поверки	

Условия поверки:

- температура окружающего воздуха, ⁰С.....
- относительная влажность воздуха, %.....
- атмосферное давление, кПа.....

Эталоны и испытательное оборудование:

	зав. №	
(Свидетельство о поверке №	ОТ	г.)

Результаты поверки приведены в таблице 1.

Таблица 1

Диапазон измерений частоты, кГц	F _{i,} кГц	(1	^F изм і); кГц	\$,	(F _{изм і}) _{ср} , кГц	ΔΓ _i , κΓι	δ _{Fi} , %	Пределы допускаемой относительной погрешности $\delta_{доп}$, %
								±

Выводы:_____

Поверку проводили:

ПРИЛОЖЕНИЕ Г

Протокол поверки №

от " "_____г.

Наименование СИ	Аппаратура многоканальная измеритель- ная управляющая «Spider-80х»
Заводской номер СИ	
Заказчик	
Дата поверки	

Условия поверки:

- температура окружающего воздуха, ⁰С.....

- относительная влажность воздуха, %.....
- атмосферное давление, кПа.....

Эталоны и испытательное оборудование:

_____зав. №_____

(Свидетельство о поверке №_____ от _____г.)

Результаты поверки приведены в таблице 1.

Таблица 1

Диапазон воспроизведения амплитуды, В	U _i , B	(U _{изм і}) _s , В					(U _{изм і}) _{ср}	Δui	δ _{υi,} %	Пределы допускаемой относительной погрешности $\delta_{доп}, %$
										±

Выводы: _____

Поверку проводили: