УТВЕРЖДАЮ

Генеральный директор ОАО «НПП «Интеграл»

С.А. Каплоухий

12.01. 2016 r.

УТВЕРЖДАЮ

Генеральный директор ЗАФКИП «МЦЭ»

А.В. Федоров

2016 г.

Счётчики электрической энергии статические однофазные с функцией ограничения мощности ИНТЕГРА 102

> Методика поверки НАЕЛ.411152.002 МП

np.63624-16

Разработал: руководитель инновационной группы OAO «НПП «Интеграл» // Летров В.А./

Настоящая методика поверки распространяется на счётчики электрической энергии статические однофазные с функцией ограничения мощности ИНТЕГРА 102 (в дальнейшем счётчики) класса точности 1 по активной энергии и устанавливает методику их обязательной первичной и периодической поверок.

Счётчики выпускаются по ТУ НАЕЛ.411152.102ТУ в соответствии с требованиями ГОСТ 31818.11-2012 и ГОСТ 31819.21-2012.

Первичную и периодическую поверку осуществляют аккредитованные в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации юридические лица и индивидуальные предприниматели.

Интервал между поверками 16 лет.

1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1

таолица т.	,	r	
Операции	Номер пункта настоящей	Обязательность выполнения операции при поверке	
	методики	первичной	периодической
Внешний осмотр	6.1	Да	Да
Проверка электрической прочности изоляции	6.2	Да	Да
Опробование и проверка функционирования	6.3	Да	Да
Проверка соответствия программного обеспечения (ПО) средства измерений	6.4	Да	Да
Проверка порога чувствительности	6.5	Да	Да
Проверка отсутствия самохода	6.6	Да	Да
Проверка основной относительной погрешно-сти счётчика при измерении электроэнергии	6.7	Да	Да
Проверка погрешности хода встроенных часов и переключения тарифных зон	6.8	Да	Да

- 1.2 При получении отрицательного результата в процессе выполнения любой из операций поверки счётчик бракуют и его поверку прекращают.
- 1.3 После устранения недостатков, вызвавших отрицательный результат, счётчик вновь представляют на поверку.

2 Средства поверки

2.1 При проведении поверки должны быть применены средства, указанные в таблице 2.

Таблица 2.

Наименование операции	Наименование средств поверки,
	основные технические характеристики
1 Внешний осмотр.	Визуально
2 Проверка электрической	Установка пробойная универсальная УПУ-10:
прочности изоляции.	испытательное напряжение до 10 кВ, погрешность
	установки напряжения
	±5 %.
	Секундомер СОС ПР-2Б: время измерения более 30 мин,
	цена деления 0,2 с, класс точности 2.
3 Опробование:	Установка для поверки счётчиков электрической энергии
- проверка функционирования	автоматизированная НЕВА-Тест 6103-Т с эталонным счёт-
устройства индикации и кнопок	чиком: ном. напряжение 230 В, ток (0,01-100) А.
управления;	Блок поверки точности хода часов HS-1012.

Наименование операции	Наименование средств поверки,
-	основные технические характеристики
проверка функции ограничения мощности;проверка соответствия ПО	Головка фотосчитывающая 35 см. Кабель для подключения к импульсному выходу счётчика. Устройство сопряжения оптическое WH109-2 Преобразователь RS-485 WH109-1 Персональный компьютер IBM PC. Программное обеспечение для ПК «Тест-СОФТ» на CD. Программное обеспечение «INTEGRACONFIG» (НАЕЛ.411152.001ПО).
4 Определение метрологических характеристик: - основной погрешности при измерении активной мощности; - стартового тока; - отсутствия самохода; - точности хода встроекього таймера.	Установка для поверки счётчиков электрической энергии автоматизированная НЕВА-Тест 6103-Т с эталонным счётчиком: ном. напряжение 230 В, ток (0,01–100) А. Блок поверки точности хода часов HS-1012. Персональный компьютер IBM РС. Преобразователь RS-485 WH109-1 Программное обеспечение для ПК «Тест-СОФТ» на CD. Программное обеспечение «INTEGRACONFIG» (НАЕЛ.411152.001ПО).

- 2.1.1 Допускается использование других средств поверки, обеспечивающих допустимые погрешности измерений и требуемые режимы поверки.
- 2.2 Все средства измерений (эталоны единиц величин) должны быть поверены (аттестованы) в установленном порядке и иметь действующие свидетельства о поверке или знак поверки.

3 Требования к квалификации поверителей

3.1 К поверке счётчиков допускаются лица, прошедшие аттестацию в качестве поверителей в установленном порядке.

4 Требования безопасности

- 4.1 В целях обеспечения безопасности при проведении поверки соблюдать требования ГОСТ 8.584-2004 и «Правил техники безопасности при эксплуатации электроустановок».
- 4.2 Обслуживающий персонал должен иметь квалификационную группу по электробезопасности не ниже III.

5 Условия поверки

5.1 Поверку следует проводить в нормальных условиях применения, приведенных в таблице 3.

Таблица 3

Таолица 3. Влияющая величина	Нормальные значения	
Температура окружающего воздуха, °С	20 ± 5	
Относительная влажность воздуха, %	30-80	
Атмосферное давление, кПа (мм рт. ст.)	84-106,7 (630-800)	
Частота сети, Гц	$50 \pm 0.5 (60 \pm 0.6)$	
Внешнее магнитное поле	отсутствует	
Коэффициент искажения формы кривой синусоидального напряжения и тока, %	Не более 5	
Отклонение напряжения от среднего значения, %	± 1	
Отклонение тока от среднего значения, %	± 1	

Для контроля климатических условий испытаний использовать: термометр ТЛ-4 ГОСТ 2854-90, (10-50) °C с ценой деления 1 °C, психрометр аспирационный электрический M-34 по ТУ 25.1607.054.85, барометр-анероид БАММ-1 по ТУ 25.04.1513-79.

6 Проведение поверки

6.1 Внешний осмотр.

Фотография общего вида счётчика ИНТЕГРА 102 с закрытыми крышками клеммных колодок приведена на рисунке 1. Внешний вид счётчика ИНТЕГРА 102 без крышек клеммных колодок показан на рисунке 2.

Рисунок 1 - Фотография общего вида счётчика ИНТЕГРА 102.

- 6.1.1 При внешнем осмотре проверить комплектность (в соответствии с паспортом), маркировку, наличие схемы подключения счётчика, отметки о приёмке отделом технического контроля или о выполнении регламентных работ.
 - 6.1.2 В маркировке счётчика должны быть отражены:
 - товарный знак предприятия изготовителя;
 - обозначение типа счётчика;
 - изображение Знака утверждения типа;
 - изображение Знака соответствия по ГОСТ Р 50460;
- графическое обозначение числа фаз и проводов цепи, для которой счётчик предназначен, согласно ГОСТ 25372 – однофазная, двухпроводная;
 - номер счётчика по системе нумерации предприятия изготовителя;
 - год изготовления;
 - номинальное напряжение;
 - базовый и максимальный ток;
 - номинальная частота;
 - класс точности по ГОСТ 8.401;
 - знак 🔲 для счётчиков в изолирующем корпусе класса защиты II;
 - испытательное напряжение изоляции (символ С2 по ГОСТ 23217);
 - условное обозначение измеряемой энергии (кВт·ч);
 - постоянная счётчика;
- обозначение стандарта исполнения (надпись «ГОСТ 31818.11-2012, ГОСТ 31819.21-2012»).
 - 6.1.3 На корпусе и крышке клеммной колодки счётчика должны быть места для пломбировки и нанесения знака поверки, все крепящие винты должны быть в наличии, резьба винтов должна быть исправна, а механические элементы хорошо закреплены, не должно быть посреждений и коррозии.

6.1.4 При периодической поверке проконтролировать, чтобы батарея резервного питания была заменена на новую, со сроком годности не менее 16 лет.

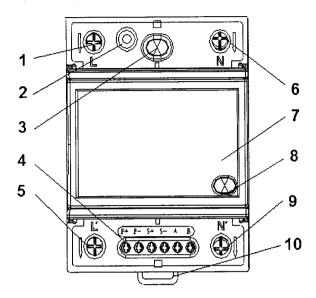


Рисунок 2 - Внешний вид счётчика ИНТЕГРА 102 (без крышек клеммных колодок):

- 1 входная клемма «фаза»;
- 2 винт крепления лицевой панели, отверстие для пломбирования клеммной коробки предприятием изготовителем;
- 3 кнопка доступа к режиму программирования;
- 4 колодка контактов управления;
- 5 выходная клемма «фаза»;
- 6 входная клемма «ноль»;
- 7 лицевая панель с табло индикации;
- 8 кнопка просмотра параметров;
- 9 выходная клемма «ноль»;
- 10 крепёж на DIN-рейку.

6.2 Проверка электрической прочности изоляции.

Проверку электрической прочности изоляции при воздействии переменного напряжения проводить с помощью установки УПУ-10 путем подачи испытательного напряжения $4,0~\mathrm{kB}$ переменного тока частотой ($50~\pm~1$) Γ ц между всеми соединенными между собой зажимами цепей тока и напряжения счётчика и «землей» в течение одной минуты.

- 6.2.1 «Землей» является проводящая пленка из фольги, охватывающая счётчик и присоединенная к плоской проводящей поверхности, на которую устанавливается цоколь счётчика. Проводящая пленка должна находиться от зажимов и отверстий для проводов на расстоянии не более 20 мм.
 - 6.2.2 Испытательный выход счётчика соединять с «землей».
- 6.2.3 Счётчик считают выдержавшим испытания, если не произошло пробоя или перекрытия изоляции. Допускается при проведении испытания появление «короны» или шума.
 - 6.3 Опробование и проверка функционирования
- 6.3.1 Установить счётчик на поверочную установку НЕВА-Тест6103-Т в соответствии со схемой его подключения, приведенной в руководстве по эксплуатации счётчика, и эксплуатационными документами на поверочную установку и прогреть при номинальных значениях напряжения, тока и частоты. Время прогрева счётчика должно быть не менее 5 мин.

Зарегистрировать наличие импульсов на испытательном выходе или светодиодном индикаторе (свидетельствует о его работоспособности) и срабатывание счётного механизма.

6.3.2 При включении счётчика в течение 1,5 с включается индикатор и все элементы цифро-знаковой индикации, показанные на рисунке 3.

Т П М Сум Т1Т2Т3Т4 Э

TI T

·T3 T4

кВт-ч

Рисунок 3 - Общий вид ЖКИ счётчика.

Убедиться, что через 1,5 с. после включения счётчик отображает мощность, определяет номер тарифа по текущей дате, тарифному расписанию текущего (или исключительного) дня недели и приступает к регистрации энергии в текущем тарифе.

- 6.3.2.1 Нажимая кнопку просмотра параметров (позиция 8 на рисунке 2), убедиться, что на индикаторе, в соответствии с порядком, указанным в руководстве по эксплуатации на счётчик, последовательно отображаются:
 - номер счётчика;
 - текущие дата и время;
 - значения измеренной суммарной электрической энергии;
 - значения измеренной суммарной электрической энергии по тарифам Т1, Т2, Т3 и Т4;
 - установленный лимит мощности.
- 6.3.3 Правильность работы счётного механизма счётчика проверяют по приращению показаний счётного механизма счётчика и числу включений светодиода, включающегося с частотой испытательного выходного устройства (числу импульсов на испытательном выходе) при подаче на счётчик приращения энергии в 0,1 киловатт-час.

Результат проверки считают положительным, если на каждое изменение состояния счётного механизма происходит N срабатываний светодиода в соответствии с формулой (1):

$$N = K \times A \tag{1}$$

где A – постоянная счётчика (число импульсов испытательного выходного устройства счётчика на $1 \kappa B \tau \cdot v$), равная $1200 \text{ имп./к} B \tau \cdot v$, $K=0,1 \kappa B \tau \cdot v$.

- 6.3.3.1 Проверку правильности работы счётного механизма многотарифного счётчика проводить для каждого дз тарифов.
 - 6.4 Проверка соответствия программного обеспечения средства измерений
- 6.4.1 Проверку соответствия программного обеспечения (ПО) проводят для встроенного в счётчике ПО, а также для внешнего ПО «INTEGRACONFIG», используемого для опроса и настройки параметров счётчика.
- 6.4.2 Проверку соответствия встроенного ПО производят путём сравнения данных, указанных в эксплуатационной документации (Руководство по эксплуатации НАЕЛ.411152.002 РЭ, п. 2.1.9) с данными в Таблице 4.

Таблина 4.

1 (Значение		
Идентификационные данные (признаки)	Встроенное ПО	Внешнее ПО	
Идентификационное наименование ПО	НАЕЛ.621.00.00	INTEGRACONFIG (НАЕЛ.411152.001ПО)	
Номер версии (идентификационный номер) ПО (не ниже)	b-140819	4d420301	
Цифровой идентификатор ПО	*	A53B09F7	
Алгоритм вычисления цифрового идентификатора ПО	*	CRC32	

* - Данные недоступны, так как встроенное ПО не может быть модифицировано, переустановлено или прочитано через какой-либо интерфейс после первичной загрузки изготовителем

- 6.4.3 Для проверки соответствия внешнего ПО «INTEGRACONFIG» необходимо:
- 1. Открыть файл handle.ini находящийся в папке установленной программы WMeterSet.
- 2. Найти номер версии DataStructVerSion=.
- 3. Вычислить цифровой идентификатор с помощью алгоритма CRC32 и сравнить с данными указанными в Таблице 4.
- 6.4.4 Результаты проверки считаются положительными, если идентификационные для встроенного и внешнего ПО соответствуют указанным в Таблице 4.
 - 6.5 Проверка порога чувствительности (стартового тока)
- 6.5.1 Проверку порога чувствительности проводить на поверочной установке при номинальном напряжении 230 В, коэффициенте мощности равном единице и токе запуска, равном 0,02 А для счётчиков класса точности 1 по активной энергии.

Результаты проверки считают положительными, если при заданном стартовом токе после подачи нагрузки индикатор функционирования включается и счётчик продолжает регистрировать показания.

На испытательном выходе счётчика с помощью частотомера или на индикаторе функционирования регистрируются импульсы. Время наблюдения определяется формулой (2):

$$T = 120000 / A \times W$$
 (минут) (2)

где А – постоянная счётчика, равная 1200 имп./кВт.ч;

W – величина активной нагрузки при заданном стартовом токе, Вт.

- 6.5.2 Счётчик считают выдержавшим проверку при заданном стартовом токе, если за время испытания регистрируется хотя бы один импульс с поверочного выхода или светового индикатора.
 - 6.6 Проверка отсутствия самохода.
- 6.6.1 При проверке на поверочной установке отсутствия самохода к цепи напряжения счётчика приложить напряжение 265 В. При этом ток в токовой цепи должен отсутствовать.

С помощью установки HEBA-Тест6103-Т на испытательном выходе счётчика регистрируются импульсы. Время наблюдения отсутствия самохода Т, определяется по следующим формулам:

$$T = \frac{600 \cdot 10^6}{k \cdot m \cdot U_{\text{HOM}} \cdot I_{\text{MAKC}}}, \text{ мин - при измерении активной энергии.}$$
 (3)

где k- постоянная счётчика;

т – число измерительных элементов, равное 1.

- 6.6.2 Счётчик считают выдержавшим проверку, если за время испытания регистрируется не более одного импульса.
- 6.7 Определение основной относительной погрешности счётчиков при измерении электроэнергии (групповая поверка) проводить на установке для поверки счётчиков НЕВА-Тест6103-Т, в состав которой входят специальные разделительные трансформаторы, изолирующие влияние шунтовых счётчиков друг на друга.
- 6.7.1 Измерения проводить при номинальном напряжении 230 В. Значения тока и коэффициента мощности в контролируемых точках рабочего диапазона задавать по таблице 5.
- 6.7.2 Значение основной относительной погрешности поверяемого счётчика определять по показаниям вычислителя погрешности поверочной установки.
- 6.7.3 Результаты поверки считаются положительными, если полученные значения основной относительной погрешности счётчика при всех режимах испытаний не превышают пределов допускаемой основной относительной погрешности, приведенных в таблице 5.

Таблина 5.

таолица э.				
Номер	Напряжение,	Ток,	cos φ	Пределы допускаемой
испытания	В	A	τος ψ	относительной погрешности, %
1	230	$0,05I_{6}$	1	± 1,5
2	230	$0,1I_{6}$	1	± 1,0
3	230	$0,1I_{6}$	0,5 инд.	± 1,5
4	230	$0,1I_{6}$	0,8 емк.	± 1,5
5	230	0,2I6	0,5 инд.	± 1,0
6	230	$0,2I_{6}$	0,8 емк.	± 1,0
7	230	I_{δ}	1	± 1,0
8	230	$I_{\mathfrak{G}}$	0,5 инд.	± 1,0
9	230	$I_{\mathfrak{G}}$	0,8 емк.	± 1,0
10	230	Імакс	1	± 1,0
11	230	Імакс	0,5 инд.	± 1,0
12	230	Імакс	0,8 емк.	± 1,0

- 6.8 Проверка погрешности хода встроенных часов и переключения тарифных зон.
- 6.8.1 Проверку погрешности хода встроенных часов и переключения тарифных зон проводить путем измерения среднесуточной погрешности хода часов счётчика на блоке поверки точности хода часов установки для поверки счётчиков электрической энергии автоматизированной НЕВА-Тест 6103-Т в следующем порядке:
- а) подключить счётчик к блоку поверки точности хода часов в соответствии с эксплуатационной документацией на установку HEBA-Тест 6103-Т;
- б) установить режим поверки точности хода часов согласно эксплуатационной документации на установку НЕВА-Тест 6103-Т;
- в) запустить режим определения погрешности, выбрав необходимую размерность отображения.
- 6.8.2 Испытания считать положительными, если значение погрешности не превышает ±0.5 сек/сутки.

7 Оформление результатов поверки

- 7.1 Результаты поверки внести в протокол, рекомендуемая форма которого приведена в ГОСТ 8.584-2004.
- 7.2 Положительные результаты первичной поверки оформить записью в паспорте (раздел «Свидетельство о поверке») с нанесением знака поверки; кроме того, нанести знак поверки на счётчик в месте, указанном на рисунке 4.
- 7.3 При отрицательных результатах поверки счётчик к применению не допускают и оформляют извещение о непригодности к применению с указанием причин в соответствии с установленным порядком.

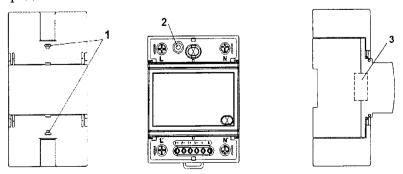


Рисунок 4- Места пломбировки счётчика ИНТЕГРА 102:

- 1 Место установки пломбы энергоснабжающей организации;
- 2 Место установки пломбы предприятия-изготовителя;
- 3 Место для нанесения знака поверки.