

Государственная система обеспечения единства измерений

Денситометр GS-900

МЕТОДИКА ПОВЕРКИ МП 025.Д4-17

> Главный метролог ФГУП «ВНИИОФИ»

С.Н. Негода «11» мая 2017 г.

1 Ввеление

Настоящая методика поверки распространяется на Денситометр GS-900 зав. номер SE8WBA00212 (далее по тексту - денситометр), предназначенный для измерений диффузной оптической плотности в проходящем и в отражённом свете, и устанавливает операции при проведении его первичной и периодической поверки.

Интервал между поверками – 1 год.

2 Операции поверки

2.1 При проведении первичной и периодической поверок выполняются операции, указанные в таблице 1.

Таблица 1

<u> </u>	Номер пункта методики		язательность выполнения операции	
	поверки	При первичной поверке	При периодической поверке	
Внешний осмотр	8.1	Да	Да	
Опробование	8.2	Да	Да	
Подтверждение соответствия программного обеспечения	8.3	Да	Да	
Определение метрологических характеристик	8.4		-	
Определение диапазона измерения диффузной оптической плотности	8.4.1	Да	Да	
Определение погрешности измерения диффузной оптической плотности	8.4.2			
Расчет абсолютной погрешности измерения диффузной оптической плотности	8.4.3	Да	Да	

- 2.2 При получении отрицательных результатов при проведении хотя бы одной операции поверка прекращается.
- 2.3 Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.

3 Средства поверки

3.1 При проведении первичной и периодической поверок применяются средства поверки, указанные в таблице 2.

Таблица 2

Номер	Наименование и тип основного или вспомогательного средства поверки:
пункта	обозначение нормативного документа, регламентирующего технические
методики	требования, и (или) метрологические и основные метрологические
поверки	характеристики средства поверки
8.2.24	Государственный первичный эталон единицы оптической плотности ГЭТ 206-2016
	Диапазон значений диффузной оптической плотности в проходящем свете, воспроизводимых эталоном от 0,01 до 6,30 Б

	Границы погрешности результата измерения оптической плотности 0,004 Б
8.4.1 - 8.4.2	Государственный рабочий эталон единицы диффузной оптической плотности в проходящем свете по ГОСТ 8.588 – 2006;
	Диапазон воспроизводимых значений оптической плотности в проходящем свете от 0,148 до 4,239 Б;
	Границы погрешности результата измерения 0,004 Б
	Набор мер оптической плотности из состава Государственного первичного эталона единицы оптической плотности по ГОСТ 8.588-2006
	Диапазон воспроизводимых значений оптической плотности в отраженном свете от 0,090 до 2,556 Б;
	пределы допускаемой случайной составляющей погрешности воспроизводимых значений плотности 0,004 Б.

3.2 Средства поверки, указанные в таблице 2, должны быть поверены и аттестованы в установленном порядке. Допускается также применение других средств, не приведенных в таблице 2, но обеспечивающих определение (контроль) метрологических характеристик поверяемого денситометра с требуемой точностью.

4 Требования к квалификации поверителей

4.1 К проведению поверки допускают учёные хранители, либо лица допущенные к работе на ГЭТ, изучивших настоящую методику поверки и Руководство по эксплуатации денситометра, имеющих квалификационную группу не ниже III в соответствии с правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328Н и прошедшие полный инструктаж по технике безопасности, прошедших обучение на право проведения поверки по требуемому виду измерений.

5 Требования безопасности

- 5.1 При проведении поверки следует соблюдать требования, установленные ГОСТ 12.1.031-2010, ГОСТ 12.1.040-83, правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328Н. Оборудование, применяемое при поверке, должно соответствовать требованиям ГОСТ 12.2.003-91. Воздух рабочей зоны должен соответствовать ГОСТ 12.1.005-88 при температуре помещения, соответствующей условиям испытаний для легких физических работ.
- 5.2 Система электрического питания прибора должна быть защищена от колебаний и пиков сетевого напряжения, искровые генераторы не должны устанавливаться вблизи приборов.
- 5.3 При выполнении поверки должны соблюдаться требования, указанные в «Правилах техники безопасности при эксплуатации электроустановок потребителей», утвержденных Госэнергонадзором, а также требования руководства по эксплуатации денситометра.
- 5.4 Помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

6 Условия проведения поверки

- 6.1 Все этапы поверки, за исключением особо оговоренных, проводят при следующих условиях:
 - температура окружающего воздуха, °С

от 21 до 25;

- относительная влажность воздуха, %, не более

55;

- атмосферное давление, кПа

от 96 до 105.

- 6.2 В помещении не допускаются посторонние источники излучения, мощные постоянные и переменные электрические и магнитные поля. Заземление прибора должно быть независимым с сопротивлением не более 30 Ом.
- 6.3 Рядом с прибором не должно быть источников тепла, таких как газовая горелка, электронагреватель, печь и т.п. Допускаемый перепад температуры воздуха, во время проведения поверки, в течение часа не более 2 °C.

7 Подготовка к поверке

- 7.1. Извлекают денситометр из упаковочной коробки. Если прибор транспортировался и/или хранился в условиях не соответствующих п.б.1, следует перед включением выдержать его в условиях, указанных в п.б.1, не менее 2 часов.
- 7.2 Устанавливают программное обеспечение Image Lab на компьютер, затем подсоединяют прибор к компьютеру, используя кабель USB, поставляемый в комплекте с денситометром.
- 7.3 Устанавливают драйвер для денситометра на компьютер с учётом версии операционной системы.

8 Проведение поверки

8.1 Внешний осмотр

- 8.1.1 При внешнем осмотре денситометра проверяют отсутствие видимых механических повреждений влияющих на его метрологические характеристики; наличие заземления; наличие и прочность органов управления и коммутации, четкость фиксации их положения; чистоту гнезд, разъемов и клемм; состояние соединительных кабелей и подключение прибора к электрической сети с помощью соответствующих кабелей.
- 8.1.2 Денситометр считается прошедшим операцию поверки, если корпус не поврежден, внешние элементы, органы управления и коммутации не повреждены, надежно закреплены на корпусе, четко фиксируются в нужном положении, отсутствуют механические повреждения и ослабления элементов конструкции, разъемы чистые, все кабели, согласно руководству по эксплуатации, в наличии, не повреждены, в сетевом кабеле питания предусмотрена возможность заземления.

8.2 Опробование

- 8.2.1 Подключают денситометр к источнику переменного тока (напряжение переменного тока от $100~\mathrm{B}$ до $240~\mathrm{B}$, частота переменного тока от $47~\mathrm{\Gamma \mu}$ до $63~\mathrm{\Gamma \mu}$) с помощью входящего в комплект кабеля питания.
- 8.2.2 Включают денситометр нажатием кнопки питания на задней панели прибора. Оранжевый светодиодный индикатор на передней панели денситометра загорится, а зелёный светодиодный индикатор на передней панели денситометра начнёт мигать (индикатор автоматического тестирования), после перехода в рабочий режим диод перестанет мигать.
- 8.2.3 Юстировка денситометра осуществляется автоматически при каждом запуске прибора в рабочем режиме, результаты юстировки по умолчанию включаются в протокол измерений, сформированный а программе Image Lab.
- 8.2.4 Нажимают кнопку New/Новый в окне Protocol/Протокол на стартовой странице, или выбирают New Protocol/Новый протокол на панели инструментов, или в меню (см. рисунок 1)

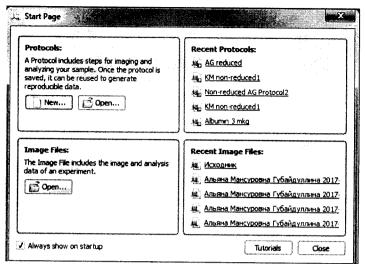


Рисунок 1

8.2.5 Настраивают протокол. На левой панели отображаются заголовки. Под заголовками - пронумерованные шаги протокола. Можно включить или отключить шаг, установив или сняв флажок. При выборе шага в правой части окна отображаются подробные настройки этого шага (см. рисунок 2)

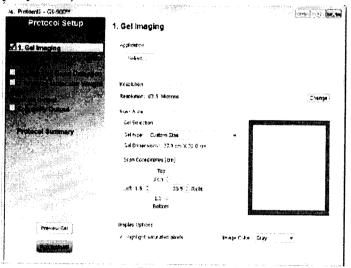


Рисунок 2

- 8.2.6 В открытом окне создания протокола для измерения оптической плотности плёнки в проходящем свете, используют красный фильтр: нажимают Select/Выберите \to X-Ray Film/Плёнка \to Grey Film/Серая плёнка.
- 8.2.7 Для измерения оптической плотности в отражённом свете, используют красный фильтр, для этого нажимают Select/Выберите \rightarrow Blots/Блоты \rightarrow Coomassie Blue/Кумасси.
- 8.2.8 Для создания пользовательского приложения нажимают Select/Выберите → Custom/Пользовательская настройка → Mange Custom Application/Управление пользовательским приложением. Откроется диалоговое окно Manage Custom Application/Управление пользовательским приложением (см. рисунок 3)

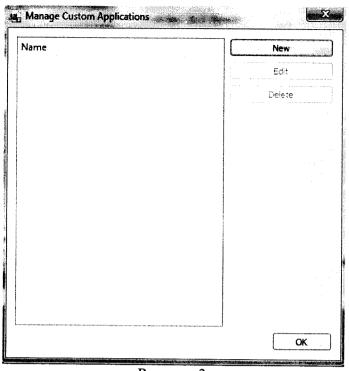


Рисунок 3

8.2.9 В открытом окне Manage Custom Application/Управление пользовательским приложением нажимают кнопку New/Hoboe. Появится диалоговое окно Create Custom Application/Создание настраиваемого приложения (см. рисунок 4).

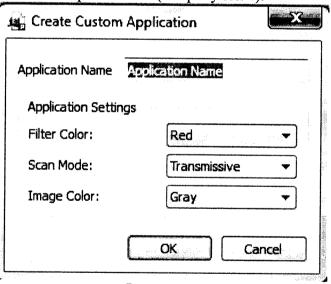


Рисунок 4

8.2.10 Вводят имя приложения, выбирают фильтр, режим сканирования и цвет изображения в списке. При выборе режима сканирования устанавливают Transmissive/Трансмиссивный - для проходящего света или Reflective/Светоотражающий - для отраженного света. После задания настроек выбирают созданный метод в окне Manage Custom Application/Управление пользовательским приложением (см. рисунок 5)

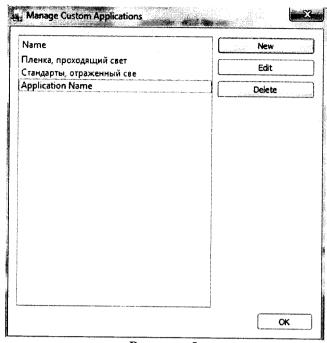


Рисунок 5

- 8.2.11 Выбирают цвет изображения в открытом окне создания протокола для параметра изображения Image Color/Цвет изображения.
- 8.2.12 В открытом окне создания протокола для параметра Scan Area/Области сканирования в закладке Gel type выбирают Custom Size/Настраиваемый размер (см. рисунок 6).

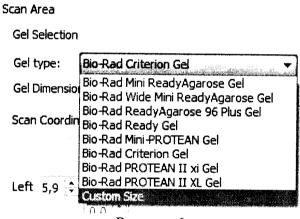


Рисунок 6

- 8.2.13 Ставят поочерёдно измеряемые образцы (на пропускание Государственный рабочий эталон единицы диффузной оптической плотности в проходящем свете; на отражение набор мер оптической плотности из состава Государственного первичного эталона единицы оптической плотности ГЭТ 206-2016) в поле сканирования денситометра.
 - 8.2.14 Нажимают Preview Gel/ Предварительный просмотр (см. рисунок 7).

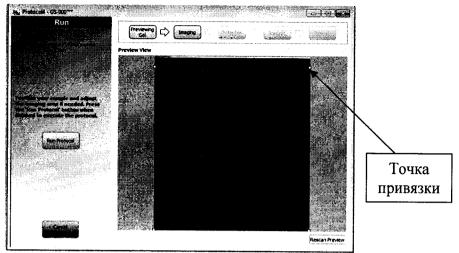


Рисунок 7

8.2.15 Нажимают на точку привязки и перемещают её, чтобы изменить размер красного поля для задания области измерения (см. рисунок 8)

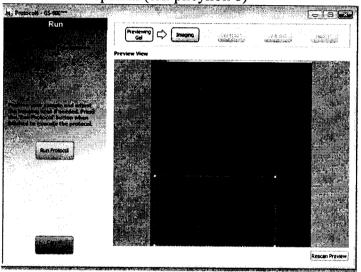
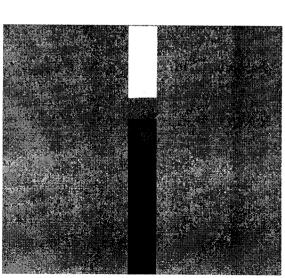
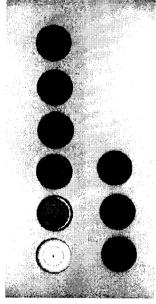




Рисунок 8

8.2.16 После установки требуемых размеров нажимают Run Protocol/Запустить протокол. После завершения сканирования откроется окно с изображением меры (см. рисунок 9)

пропускание

отражение

Рисунок 9

8.2.17 Для регулировки яркости и контрастности изображения нажимают кнопку Image Transform/Корректировка изображения (см. рисунок 10).

Рисунок 10

8.2.18 Нажимают на Image Tools/Инструменты изображения в меню Analysis Tools Вох/Панель инструментов и анализа. Появиться меню (см. рисунок 11).

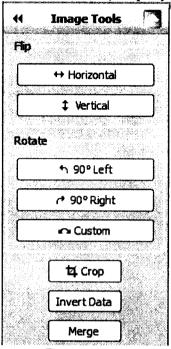


Рисунок 11

8.2.19 Выполняют корректировку изображения с помощью представленных команд для удобства получения результатов измерений.

Для возврата в меню Analysis Tools Box/Панель инструментов и анализа нажимают Back to Tool Box/Возврат в панель инструментов (см. рисунок 12)

Рисунок 12

8.2.20 Переходят в Analysis Tool Box/панели инструментов для анализа → Volume Tools/Инструмент объёма. Нажимают на Rectangle/Прямоугольник, или Freehand/Форма от руки, или Lane/Линия → выделяют середину каждого поля (см. рисунок 13). Для облегчения выделения допускается изменять контрастность изображения (см. п.8.2.17).

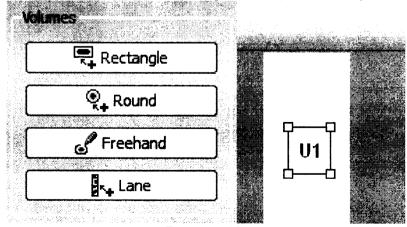


Рисунок 13

8.2.21 Нажимают на панели инструментов Report/Отчёт \rightarrow Display report options/Показать параметры отчёта (см. рисунок 14)

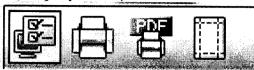


Рисунок 14

- 8.2.22 В появившемся диалоговом окне Report Settings/Настройка отчёта, во вкладке General/Общее должны быть выбраны следующие параметры (см. рисунок 15):
 - Include Gel Image/Включить изображение геля;
 - Show Volumes/Показать Объёмы;
 - Include Unannotated Image/Включить изображение без примечаний;
 - Acquisition Information/Получение информации;
 - Image Info/Информация изображения.

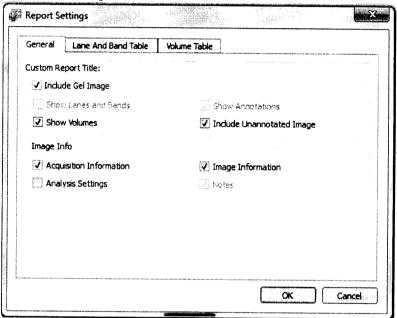


Рисунок 15

Во вкладке Volume Table/Таблица объёма должны быть выбраны следующие параметры (см. рисунок 16):

- Include Volume Table / Включить таблицу объёма;
- No/Номер;
- Label/Маркировка;
- Min. Value (OD)/Минимальное значение(OП);
- Max. Value (OD)/Максимальное значение(OП);
- Mean Value (OD)/Среднее значение(OП);
- Std. Dev/Стандартное отклонение;
- Area(mm2)/Площадь(мм 2).

General Lane And Band Table V Include Volume Table	Volume Table	
Not Displayed Type Volume (OD) Adj. Vol. (OD) Mean Bkgd. (OD) Abs. Quant. Rel. Quant. # of Pixels	Displayed No. Label Min. Value (OD) Max. Value (OD) Std. Dev. Area (mm2)	

Рисунок 16

- 8.2.23 Проводятся однократные измерения диффузной оптической плотности каждого поля меры оптической плотности в проходящем свете и каждой меры набора мер оптической плотности в отраженном свете. Записывают результат в протокол.
- 8.2.24 Проводят однократные измерения диффузной оптической плотности каждого поля меры оптической плотности в проходящем свете и каждой меры набора мер оптической плотности в отраженном свете на ГЭТ 206-2016.
- 8.2.25 Денситометр считается прошедшим операцию поверки, если диффузная оптическая плотность, измеренная на денситометре, не превышает диффузную оптическую плотность, измеренную на ГЭТ 206-2016, на \pm 0,02 Б для диффузной оптической плотности в проходящем свете в диапазоне от 0,15 до 1,06 Б включительно; на \pm 0,05 Б для диффузной оптической плотности в проходящем свете в диапазоне свыше 1,06 до 2,80 Б и для диффузной оптической плотности в отраженном свете на \pm 0,05 Б в диапазоне от 0,12 до 2,40 Б.

8.3 Подтверждение соответствия программного обеспечения

- 8.3.1 Проверяют соответствие идентификационных данных программного обеспечения сведениям, приведенным в описании типа на денситометр.
- 8.3.2 Для просмотра идентификационных данных программного обеспечения денситометра необходимо запустить программное обеспечение, кликнув два раза на значок Image Lab на рабочем столе компьютера, после чего заходят во вкладку Help и затем нажимают на раздел About. После этого в главном окне программы отобразится наименование и номер версии программного обеспечения.
- 8.3.3 Денситометр считается прошедшим операцию поверки, если идентификационные данные программного обеспечения соответствуют значениям, приведенным в таблице 3.

аблица

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Image Lab
Номер версии (идентификационный номер) ПО	5.1 и выше
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	-

8.4 Определение метрологических характеристик

8.4.1 Определение диапазона измерения диффузной оптической плотности

- 8.4.1.1 Измеряют оптическую плотность каждого поля набора меры оптической плотности в проходящем свете и каждой меры набора мер оптической плотности в отраженном свете по 10 раз в центре каждого поля набора мер оптической плотности согласно п. 8.2.6 8.2.23.
- 8.4.1.2 Рассчитывают среднее арифметическое значение оптической плотности для каждого поля набора мер по формуле 1:

$$D_{cp} = \frac{\sum_{i=1}^{10} D_i}{10} , \text{ B}$$
 (1)

где D_{i} _ результат измерения диффузной оптической плотности в проходящем/отраженном свете, \overline{b}

8.4.1.3 Ввиду отличия оптической схемы денситометра от оптической схемы ГЭТ 206-2016, для исключения постоянной составляющей систематической погрешности вводится поправка К, которая рассчитывается по формуле 2:

$$K = \frac{D_{\text{ЭТАЛОНА}}}{D_{\text{cp}}}, \mathcal{F} \tag{2}$$

где $D_{\mbox{\tiny эталона}}$ - диффузная оптическая плотность в проходящем/отраженном свете, измеренная на ГЭТ 206-2016, Б

8.4.1.4 Денситометр считается прошедшим операцию поверки, если диапазон измерения диффузной оптической плотности в проходящем свете составляет от 0.15 до 2.80 Б, в отраженном свете - от 0.12 до 2.40 Б.

8.4.2 Определение погрешности измерения диффузной оптической плотности

Определение погрешности измерений оптической плотности проводят для каждого поля (меры) набора мер оптической плотности в проходящем свете и отраженном свете, по результатам измерений оптической плотности по 10 раз в центре каждого поля (меры) набора мер оптической плотности.

Устанавливают в поле сканирования денситометра при измерении в проходящем свете: набор мер оптической плотности в проходящем свете — Государственный рабочий эталон единицы диффузной оптической плотности в проходящем свете по ГОСТ 8.588-2006; при измерении в отражённом свете — набор мер оптической плотности из состава Государственного первичного эталона оптической плотности по ГОСТ 8.588-2006.

8.4.3 Расчет абсолютной погрешности измерения диффузной оптической плотности

8.4.3.1 Рассчитывают абсолютную погрешность (Δ) измерений визуальной оптической плотности по формуле 3:

$$\Delta = D_{\text{эталона}} - D_{\text{сp}} \cdot K \tag{3}$$

где К – поправочный коэффициент, рассчитанный по формуле 2;

 D_{cp} — среднее арифметическое значение оптической плотности для каждого поля набора мер, рассчитанное по формуле 1;

 $D_{\text{эталона}}$ - диффузная оптическая плотность в проходящем/отраженном свете, измеренная на ГЭТ 206-2016, Б.

8.4.3.2 Денситометр считается прошедшим операцию поверки, если полученные значения абсолютной погрешности измерения диффузной оптической плотности не превышают: \pm 0,02 Б для диффузной оптической плотности в проходящем свете в диапазоне от 0,15 до 1,06 Б включительно; \pm 0,05 Б для диффузной оптической плотности в проходящем свете в диапазоне свыше 1,06 до 2,80 Б и для диффузной оптической плотности в отраженном свете на \pm 0,05 Б в диапазоне от 0,12 до 2,40 Б.

9 Оформление результатов поверки

- 9.1 Результаты поверки заносятся в протокол (форма протокола приведена в приложении 1 настоящей методики поверки).
- 9.2 Денситометр, прошедший поверку с положительным результатом, признаётся годными и допускается к применению. На него выдается свидетельство о поверке установленной формы с указанием полученных по п.п. 8.4.1 − 8.4.2 фактических значений метрологических характеристик денситометра и наносят знак поверки (место нанесения указано в описании типа) согласно Приказу Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», и денситометр допускают к эксплуатации.
- 9.3 Денситометр, прошедший поверку с отрицательным результатом, признаётся непригодным, не допускается к применению и на него выдается извещение о непригодности с указанием причин. Свидетельство о предыдущей поверке и знак поверки аннулируют и выписывают «Извещение о непригодности» с указанием причин в соответствии с требованиями Приказа Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015г.

Начальник отдела ФГУП «ВНИИОФИ»

Начальник сектора ФГУП «ВНИИОФИ»

Инженер ФГУП «ВНИИОФИ»

А.В. Иванов

А.Н. Шобина

А.В. Колдашов

ПРОТОКОЛ

первичной / периодической поверки Средство измерений: <u>Денситометр GS-900</u> (Наименование СИ, тип (если в состав СИ входит несколько автономных блоков то приводят их перечень (наименования) и типы с разделением знаком «косая дробь» /) **Зав. №** <u>SE8WBA00212 №/№</u> Заводские номера блоков Принадлежащее_____ Наименование юридического лица, ИНН Поверено в соответствии с методикой поверки «ГСИ. Денситометр GS-900. Методика поверки МП .Д4-17 », утвержденной ФГУП «ВНИИОФИ» «11» мая 2017 г. Наименование документа на поверку, кем утвержден (согласован), дата

При следующих значениях влияющих факторов: (приводят перечень и значения влияющих факторов, нормированных в методике поверки)

(наименование, заводской номер, разряд, класс точности или погрешность)

- температура окружающего воздуха,°С
- относительная влажность, %, не более
- атмосферное давление, кПа

С применением эталонов

от 10 до 28

70

от 80,0 до 106,7

Получены результаты поверки метрологических характеристик:

Характеристика	Результат	Требования методики
Диапазон измерения визуальной		поверки
оптической плотности		
- в проходящем свете, Б		от 0,15 до 3,40
- в отраженном свете, Б		от 0,02 до 2,70
Пределы допускаемой абсолютной		
погрешности измерения визуальной		
оптической плотности, Б:		
- в проходящем свете в диапазоне		ļ
от 0,15 до 1,06 Б включительно		± 0,02
свыше 1,06 до 2,80 Б		± 0,05
- в отраженном свете		± 0,05

- в проходящем свете в диапазоне	
от 0,15 до 1,06 Б включительно	± 0.02
свыше 1,06 до 2,80 Б	± 0.05
- в отраженном свете	± 0,05
Рекомендации Средство измерений признать при	игодным (или непригодным) для применения
	отодным (или непригодным) для применения
Исполнители:	
	подписи, ФИО, должность