СОГЛАСОВАНО

Заместитель генерального директора, Руководитель Метрологического центра

000 «Автопрогресс-М»

В.Н. Абрамов

«29» декабря 2022 г.

МП АПМ 69-22

«ГСИ. Аппаратура геодезическая спутниковая многочастотная GT. Методика поверки»

1 Общие положения

Настоящая методика поверки применяется для поверки аппаратуры геодезической спутниковой многочастотной GT (далее – аппаратура), производства SHANGRAO HAODI IMP&EXP TRADING CO., LTD., Китай, используемой в качестве рабочих средств измерений и устанавливает методы и средства их первичной и периодической поверки.

1.1 В результате поверки должны быть подтверждены следующие метрологические требования, приведенные в таблице 1.

Таблица 1 – Метрологические характеристики

Наименование характеристики	Значение
Диапазон измерений длин базисов, км	от 0 до 30
Границы допускаемой абсолютной погрешности измерений длины	
базиса (при доверительной вероятности 0,997) в режимах:	
- «Статика», «Быстрая статика», мм:	
- в плане	$\pm 3 \cdot (2,5+0,3\cdot 10^{-6}\cdot D)$
- по высоте	$\pm 3 \cdot (5+0,5\cdot 10^{-6}\cdot D)$
- «Кинематика с постобработкой» и «Кинематика в реальном времени	
(RTK)», мм:	
- в плане	$\pm 3 \cdot (4+0.5 \cdot 10^{-6} \cdot D)$
- по высоте	$\pm 3 \cdot (8+0.5\cdot 10^{-6}\cdot D)$
- «Дифференциальные кодовые измерения», мм:	
- в плане	$\pm 3 \cdot (200 + 1 \cdot 10^{-6} \cdot D)$
- по высоте	±3·(400+1·10 ⁻⁶ ·D)
Примечание	
D – измеряемое расстояние в мм.	

- 1.2 Аппаратура до ввода в эксплуатацию, а также после ремонта подлежит первичной поверке, в процессе эксплуатации периодической поверке.
 - 1.3 Первичной поверке подвергается каждый экземпляр аппаратуры.
- 1.4 Периодической поверке подвергается каждый экземпляр аппаратуры, находящегося в эксплуатации, через межповерочные интервалы.
- 1.5 Выполнение всех требований настоящей методики обеспечивает прослеживаемость поверяемого средства измерений к следующим государственным первичным эталонам:
 - ГЭТ 199-2018 государственный первичный специальный эталон единицы длины.
- 1.6 В методике поверки реализован следующий метод передачи единиц: метод прямых измерений.
- 1.7 В случае применения аппаратуры для работ, не требующих использования всех режимов измерений, при проведении поверки по письменному заявлению владельца СИ допускается поверка отдельных режимов, с обязательной передачей в Федеральный информационный фонд по обеспечению единства измерений информации об объеме проведенной поверки.

2 Перечень операций поверки средств измерений

Для поверки аппаратуры должны быть выполнены операции, указанные в таблице 2.

Таблица 2 – Операции поверки

Наименование операции поверки		сть выполнения	Номер раздела (пункта) методики поверки, в	
		поверки при		
	первичной	периодической	соответствии с	
	поверке	поверке	которым выполняется операция поверки	
Внешний осмотр средства	Да	Да	7	
измерений				
Контроль условий поверки	Да	Да	8 - 9	
Подготовка к поверке и опробование средства измерений	Да	Да	8	
Проверка программного	Да	Да	9	
обеспечения средства измерений				
Определение метрологических				
характеристик средства	-		10	
измерений				
Определение диапазона и абсолютной погрешности				
абсолютной погрешности измерений длин базиса в режиме	Да	Да	10.1	
измерении длин оазиса в режиме «Статика»				
^				
Определение диапазона и абсолютной погрешности				
измерений длин базиса в режиме	Да	Да	10.2	
«Быстрая статика»				
Определение диапазона и				
абсолютной погрешности				
измерений длин базиса в режиме	Да	Да	10.3	
«Кинематика с постобработкой»				
Определение диапазона и				
абсолютной погрешности				
измерений длин базиса в режиме	Да	Да	10.4	
«Кинематика в реальном				
времени (RTK)»				
Определение диапазона и				
абсолютной погрешности				
измерений длин базиса в режиме	Да	Да	10.5	
«Дифференциальные кодовые				
измерения»				
Подтверждение соответствия				
средства измерений	Да	Да	11	
метрологическим требованиям				

3 Требования к условиям проведения поверки

При проведении поверки должны соблюдаться следующие условия измерений:

- температура окружающей среды, °С

от +15 до +25.

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков и порывов ветра при температуре от -45 до +80 °C.

4 Требования к специалистам, осуществляющим поверку

- 4.1 К проведению поверки допускаются специалисты организации, аккредитованной в соответствии с законодательством Российской Федерации об аккредитации в национальной системе аккредитации на проведение поверки средств измерений данного вида, имеющие необходимую квалификацию, ознакомленные с руководством по эксплуатации и настоящей методикой поверки.
 - 4.2 Для проведения поверки аппаратуры достаточно одного поверителя.

5 Метрологические и технические требованиям к средствам поверки

При проведении поверки должны применяться средства поверки, приведенные в таблице 3.

Таблица 3 - Средства поверки

Операции	Метрологические и технические	Перечень рекомендуемых
поверки,	требования к средствам поверки,	средств поверки
требующие	необходимые для проведения поверки	
применение		
средств поверки		
	Основные средства поверки	
	Рабочие эталоны 2-го разряда по	Тахеометр электронный Leica
	Государственной поверочной схеме для	TS30 (per. № 82995-21)
	координатно-временных средств	
10.1-10.5	измерений, утверждённой Приказом	
	Росстандарта от 29.12.2018 г., № 2831 -	
	фазовый светодальномер (тахеометр),	
	эталонный базисный комплекс	
	Рабочий эталон 3-го разряда по	Лента измерительная эталонна
	Государственной поверочной схеме для	3-го разряда рег. № 36469-07
	средств измерений длины в диапазоне от	
10.1-10.5	$1 \cdot 10^{-9}$ до 100 м и длин волн в диапазоне от	
10.1-10.3	0,2 до 50 мкм, утвержденной приказом	
	Федерального агентства по техническому	
	регулированию и метрологии № 2840 от	
	«29» декабря 2018 г. – лента измерительная	
	Вспомогательное оборудование	e
	Средство измерений длины по	Рулетка измерительна:
	Государственной поверочной схеме для	металлическая UM5M (рег. N
	средств измерений длины в диапазоне от	22003-07)
	$1\cdot10^{-9}$ до 100 м и длин волн в диапазоне от	
10.1-10.5	0,2 до 50 мкм, утвержденной приказом	
	Федерального агентства по техническому	
	регулированию и метрологии № 2840 от	
	«29» декабря 2018 г. – рулетка	
	измерительная металлическая	
	Средство измерений температуры	Термогигрометр ИВА-6, рег. М
0.0.101.10.5	окружающей среды: диапазон измерений от	
2 0 10 10 4		
8, 9, 10.1-10.5	-45 до +80 °C, пределы допускаемой	

Примечание — допускается использовать при поверке другие утвержденные и аттестованные эталоны единиц величин, средства измерений утвержденного типа и поверенные, удовлетворяющие метрологическим требованиям, указанным в таблице.

6 Требования (условия) по обеспечению безопасности проведения поверки

При проведении поверки меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации на аппаратуру и средства поверки, правилам по технике безопасности, действующим на месте проведения поверки, а также правилам по технике безопасности при производстве топографо-геодезических работ ПТБ-88 (Утверждены коллегией ГУГК при СМ СССР 09.02.1989 г., № 2/21).

7 Внешний осмотр средства измерений

При внешнем осмотре должно быть установлено соответствие аппаратуры следующим требованиям:

- соответствие внешнего вида аппаратуры описанию типа средств измерений;
- отсутствие механических повреждений и других дефектов, способных оказать влияние на безопасность проведения поверки или результаты поверки.

Если перечисленные требования не выполняются, аппаратуру признают непригодным к применению, дальнейшие операции поверки не производят.

8 Подготовка к поверке и опробование средства измерений

- 8.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
 - проверить наличие действующих свидетельств о поверке на средства поверки;
- аппаратуру и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией и выдержать при условиях, указанных в п.3 не менее 4 ч.;
- аппаратура и средства поверки должны быть установлены в условиях, обеспечивающих отсутствия механических воздействий (вибрация, деформация, сдвиги).
 - 8.2 При опробовании должно быть установлено соответствие следующим требованиям:
 - отсутствие качки и смещений неподвижно соединённых деталей и элементов;
 - плавность движения подвижных деталей и элементов;
 - правильность взаимодействия с комплектом принадлежностей;
 - работоспособность всех функциональных режимов и узлов.

Если перечисленные требования не выполняются, аппаратуру признают непригодным к применению, дальнейшие операции поверки не производят.

9 Проверка программного обеспечения средства измерений

Идентификация программного обеспечения (далее – ПО) выполняется в следующем порядке:

- для идентификации МПО, установленного в аппаратуру, необходимо подключиться к аппаратуре, используя ПО «Surpad 4.2», выбрать вкладку «Приемник», выбрать пункт «Информация». Номер версии отобразится в строке «Версия прошивки»;
- для идентификации ПО «Surpad 4.2», на вкладке «Проект» выбрать пункт «О программе». Версия ПО отобразится в верхней части экрана;
- для идентификации ПО «eOffice», нажать кнопку «О программе», номер версии ПО отобразится в появившемся окне в строке «Версия».
- для идентификации ПО «GeoSolution», в верхней части экрана нажать кнопку «Help», в появившемся списке выбрать пункт «About». Номер версии ПО отобразится в нижней части появившегося диалогового окна.

Идентификационные данные программного обеспечения должны соответствовать данным, приведённым в таблице 4.

Таблица 4 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение				
Идентификационное наименование ПО	МПО	SurPad 4.2	tSurvey	«eOffice»	«GeoSolution»
Номер версии	не ниже	не ниже 1.0-	не ниже	не ниже	не ниже
(идентификационный номер) ПО	3.15	20220690	1.0	2.2.0.2	1.220801.105712
Цифровой идентификатор ПО		-	-	-	-

Если перечисленные требования не выполняются, аппаратуру признают непригодной к применению, дальнейшие операции поверки не производятся.

10 Определение метрологических характеристик средства измерений

10.1 Определение диапазона и абсолютной погрешности измерений длин базиса в режиме «Статика»

Диапазон и абсолютная погрешность измерений длины базиса в режиме «Статика» определяется путем многократных измерений (не менее 5) двух интервалов двух контрольных длин базиса, определённых лентой измерительной 3 разряда и фазовым светодальномером (тахеометром), 2 разряда в соответствии с Государственной поверочной схемой для координатновременных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. № 2831 и действительные значения которых расположены в диапазоне от 0 до 30,0 км.

Установить поверяемую аппаратуру на пункте при помощи адаптера для закрепления на штативе таким образом, чтобы ось внешней ГНСС-антенны была вертикальной и находилась над центром пункта.

В качестве базовой станции использовать средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 0 до 30,0 км, значения метрологических характеристик которого не превышают значения, указанные в таблице 1.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения поверяемой аппаратурой при условиях, указанных в таблице 5 настоящей методики поверки.

Таблица 5

Режим измерений	Количество спутников, шт.	Время измерений, мин	Интервал между эпохами, с.
«Статика», «Быстрая статика»		от 20,0 до 60,0	
«Статика», «Быстрая статика», «Кинематика с постобработкой», «Кинематика в реальном времени (RTK)», «Дифференциальные кодовые измерения»	≥ 6	от 0,05 до 0,20*	1

Испытания проводятся при устойчивом закреплении испытываемой аппаратуры, открытом небосводе, отсутствии электромагнитных помех и многолучевого распространения сигнала спутников, а также при хорошей конфигурации спутниковых группировок.

Выключить аппаратуру согласно требованиям руководства по эксплуатации. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой,

^{* -} после выполнения инициализации или достижения сходимости

более чем на величину погрешности, приписанную эталонному тахеометру. В случае, если измеренная длина базиса отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений длины базиса для больших длин определяется в режиме «Статика» по приращению координат замкнутой фигуры (треугольника), длины сторон которой находятся в диапазоне от 3 км до 30 км, в соответствии с п. 6.4. МИ 2408-97 «Аппаратура пользователей космических навигационных систем геодезическая. Методика поверки».

Следует последовательно устанавливать аппаратуру на пунктах, образующих треугольник и согласно руководству по эксплуатации выполнить измерения и вычислить приращения координат между пунктами.

10.2 Определение диапазона и абсолютной погрешности измерений длин базиса в режиме «Быстрая статика»

Диапазон и абсолютная погрешность измерений длины базиса в режиме «Быстрая статика» определяется путем многократных измерений (не менее 5) двух контрольных длин базиса, определённых лентой измерительной 3 разряда и фазовым светодальномером (тахеометром), 2 разряда в соответствии с Государственной поверочной схемой для координатновременных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. № 2831 и действительные значения которых расположены в диапазоне от 0 до 30,0 км.

Установить поверяемую аппаратуру на пункте при помощи адаптера для закрепления на штативе таким образом, чтобы ось внешней Γ HCC-антенны была вертикальной и находилась над центром пункта.

В качестве базовой станции использовать средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 0 до 30,0 км, значения метрологических характеристик которого не превышают значения, указанные в таблице 1.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения поверяемой аппаратурой при условиях, указанных в таблице 5 настоящей методики поверки.

Выключить аппаратуру согласно требованиям руководства по эксплуатации. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному тахеометру. В случае, если измеренная длина базиса отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений длины базиса для больших длин определяется в режиме «Быстрая статика» по приращению координат замкнутой фигуры (треугольника), длины сторон которой находятся в диапазоне от 3 км до 30 км, в соответствии с п. 6.4. МИ 2408-97 «Аппаратура пользователей космических навигационных систем геодезическая. Методика поверки».

Следует последовательно устанавливать аппаратуру на пунктах, образующих треугольник и согласно руководству по эксплуатации выполнить измерения и вычислить приращения координат между пунктами.

10.3 Определение диапазона и абсолютной погрешности измерений длин базиса в режиме «Кинематика с постобработкой»

Диапазон и абсолютная погрешность измерений длины базиса в режиме «Кинематика с постобработкой» определяется путем многократных измерений (не менее 10) двух контрольных

длин базиса, определённых лентой измерительной 3 разряда и фазовым светодальномером (тахеометром), 2 разряда в соответствии с Государственной поверочной схемой для координатновременных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. № 2831 и действительные значения которых расположены в диапазоне от 0 до 30,0 км.

Установить поверяемую аппаратуру на пункте при помощи адаптера для закрепления на штативе таким образом, чтобы ось внешней Γ HCC-антенны была вертикальной и находилась над центром пункта.

В качестве базовой станции использовать средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 0 до 30,0 км, значения метрологических характеристик которого не превышают значения, указанные в таблице 1.

где D – измеряемое расстояние в мм.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения поверяемой аппаратурой при условиях, указанных в таблице 5 настоящей методики поверки.

Выключить аппаратуру согласно требованиям руководства по эксплуатации. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному тахеометру. В случае, если измеренная длина базиса отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений длины базиса для больших длин определяется в режиме «Кинематика с постобработкой» по приращению координат замкнутой фигуры (треугольника), длины сторон которой находятся в диапазоне от 3 км до 30 км, в соответствии с п. 6.4. МИ 2408-97 «Аппаратура пользователей космических навигационных систем геодезическая. Методика поверки».

Следует последовательно устанавливать аппаратуру на пунктах, образующих треугольник и согласно руководству по эксплуатации выполнить измерения и вычислить приращения координат между пунктами.

10.4 Определение диапазона и абсолютной погрешности измерений длин базиса в режиме «Кинематика в реальном времени (RTK)»

Диапазон и абсолютная погрешность измерений длины базиса в режиме «Кинематика в реальном времени (RTK)» определяется путем многократных измерений (не менее 10) двух интервалов эталонного базисного комплекса или двух контрольных длин базиса, определённых фазовым светодальномером (тахеометром), 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. № 2831 и действительные значения которых расположены в диапазоне от 0 до 30,0 км.

Установить поверяемую аппаратуру на пункте при помощи адаптера для закрепления на штативе таким образом, чтобы ось внешней Γ HCC-антенны была вертикальной и находилась над центром пункта.

В качестве базовой станции использовать средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 0 до 30,0 км, значения метрологических характеристик которого не превышают значения, указанные в таблице 1.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со

спутников.

Провести измерения поверяемой аппаратурой при условиях, указанных в таблице 5 настоящей методики поверки.

Выключить аппаратуру согласно требованиям руководства по эксплуатации. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному тахеометру. В случае, если измеренная длина базиса отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений длины базиса для больших длин определяется в режиме «Кинематика в реальном времени (RTK)» по приращению координат замкнутой фигуры (треугольника), длины сторон которой находятся в диапазоне от 3 км до 30 км, в соответствии с п. 6.4. МИ 2408-97 «Аппаратура пользователей космических навигационных систем геодезическая. Методика поверки».

Следует последовательно устанавливать аппаратуру на пунктах, образующих треугольник и согласно руководству по эксплуатации выполнить измерения и вычислить приращения координат между пунктами.

10.5 Определение диапазона и абсолютной погрешности измерений длин базиса в режиме «Дифференциальные кодовые измерения»

Диапазон и абсолютная погрешность измерений длины базиса в режиме «Дифференциальные кодовые измерения» определяется путем многократных измерений (не менее 10) двух интервалов эталонного базисного комплекса или двух контрольных длин базиса, определённых фазовым светодальномером (тахеометром), 2 разряда в соответствии с Государственной поверочной схемой для координатно-временных средств измерений, утверждённой Приказом Росстандарта от 29.12.2018 г. № 2831 и действительные значения которых расположены в диапазоне от 0 до 30,0 км.

Установить поверяемую аппаратуру на пункте при помощи адаптера для закрепления на штативе таким образом, чтобы ось внешней Γ HCC-антенны была вертикальной и находилась над центром пункта.

В качестве базовой станции использовать средство фазовых измерений приращения координат по сигналам ГНСС в диапазоне от 0 до 30,0 км, значения метрологических характеристик которого не превышают значения, указанные в таблице 1.

Измерить высоту установки антенн аппаратуры с помощью рулетки.

Включить аппаратуру и настроить ее на сбор данных (измерений) в соответствующем режиме измерений согласно требованиям руководства по эксплуатации.

Убедиться в правильности функционирования и отсутствии помех приему сигнала со спутников.

Провести измерения поверяемой аппаратурой при условиях, указанных в таблице 5 настоящей методики поверки.

Выключить аппаратуру согласно требованиям руководства по эксплуатации. Результат измерений не должен отличаться от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, приписанную эталонному тахеометру. В случае, если измеренная длина базиса отличается от значения L_{j_0} , полученного до начала съёмки аппаратурой, более чем на величину погрешности, необходимо повторить съёмку аппаратурой заново.

Провести обработку данных с использованием штатного ПО к аппаратуре.

Абсолютная погрешность измерений длины базиса для больших длин определяется в режиме «Дифференциальные кодовые измерения» по приращению координат замкнутой фигуры (треугольника), длины сторон которой находятся в диапазоне от 3 км до 30 км, в соответствии с п. 6.4. МИ 2408-97 «Аппаратура пользователей космических навигационных систем геодезическая. Методика поверки».

Следует последовательно устанавливать аппаратуру на пунктах, образующих треугольник и согласно руководству по эксплуатации выполнить измерения и вычислить приращения координат между пунктами.

11 Подтверждение соответствия средства измерений метрологическим требованиям

Абсолютная погрешность (при доверительной вероятности 0,997) измерений длины базиса в режимах «Статика», «Быстрая статика», «Кинематика с постобработкой», «Кинематика в реальном времени (RTK)», «Дифференциальные кодовые измерения» определяется по формуле:

$$\Delta L_j = (rac{\sum_{i=1}^n L_{j_i}}{n_j} - L_{j_0}) \pm 3 \sqrt{rac{\sum_{i=1}^n (L_{j_i} - rac{\sum_{i=1}^n L_{j_i}}{n_j})^2}{n_j - 1}},$$
 где

 ΔL_{i} – погрешность измерений j длины базиса в плане/по высоте, мм;

 L_{j_0} – эталонное значение j длины базиса в плане/по высоте, мм;

 $oldsymbol{L_{j_i}}$ – измеренное испытываемой аппаратурой значение j длины базиса i измерением в плане/по высоте, мм;

 n_{i} — число измерений j длины базиса.

За абсолютную погрешность измерений принять максимальное значение абсолютной погрешности.

Абсолютная погрешность измерений длины базиса для больших длин определяется в режимах «Статика», «Быстрая статика», «Кинематика с постобработкой», «Кинематика в реальном времени (RTK)», «Дифференциальные кодовые измерения».

Сумма приращений координат (невязка координат) не должна превышать значений, вычисленных по формуле:

$$W_{X,Y,Z} = \sqrt{(\Delta_{1_{X,Y,Z}})^2 + (\Delta_{2_{X,Y,Z}})^2 + (\Delta_{3_{X,Y,Z}})^2} ,$$

где $W_{X,Y,Z}$ - невязка координат в плане/по высоте, мм; $\Delta_{i_{X,Y,Z}}$ - допустимые значения погрешности приращений координат для і стороны треугольника в плане/по высоте, мм, приведенных в таблице 1.

Значения диапазона и абсолютной (при доверительной вероятности 0,997) погрешности измерений длины базиса в режиме «Статика», «Быстрая статика», «Кинематика с постобработкой», «Кинематика в реальном времени (RTK)», «Дифференциальные кодовые измерения» не должны превышать значений, указанных в таблице 1.

Если требования данного пункта не выполняются, аппаратуру признают непригодной к применению.

12 Оформление результатов поверки

- 12.1 Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту разделов 7 - 11 настоящей методики поверки.
- 12.2 Сведения о результатах поверки средств измерений в целях подтверждения поверки должны быть переданы в Федеральный информационный фонд по обеспечению единства измерений.
- 12.3 При положительных результатах поверки аппаратура признается пригодной к применению и по заявлению владельца средств измерений или лица, представляющего средства измерений на поверку, выдается свидетельство о поверке установленной формы. Нанесение знака поверки на средство измерений не предусмотрено.

12.4 При отрицательных результатах поверки, аппаратура признается непригодной к применению и по заявлению владельца средств измерений или лица, представляющего средства измерений на поверку, выдаётся извещение о непригодности установленной формы с указанием основных причин.

Инженер 2 категории ООО «Автопрогресс – М»

Mary

С.К. Нагорнов