Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии им. Д.И. Менделеева» ФГУП «ВНИИМ им.Д.И.Менделеева

Государственная система обеспечения единства измерений

Хроматографы жидкостные ионные СІС-D180

Методика поверки МП-242-2535-2023

Руководитель научно-исследовательского отдела государственных эталонов в области физико-химических измерений

А.В. Колобова

Старший научный сотрудник научно-исследовательского отдела государственных эталонов в области физико-химических измерений

М.А. Мешалкин

Санкт-Петербург 2023

1 Общие положения

Настоящая методика поверки распространяется на хроматографы жидкостные ионные СІС-D180 (далее по тексту - хроматографы) и устанавливает методы и средства их поверки.

Требования по обеспечению прослеживаемости поверяемого хроматографа к государственным первичным эталонам единиц величин выполняются путем реализации на хроматографе методик измерений с применением стандартных образцов утвержденного типа, прослеживаемых к комплексу государственных первичных эталонов единиц массовой (молярной) доли и массовой (молярной) концентрации по ГОСТ 8.735.0-2011 «Государственная поверочная схема для средств измерений содержания компонентов в жидких и твердых веществах и материалах. Основные положения»:

ГЭТ 217-2018 ГПЭ единиц массовой доли и массовой (молярной) концентрации неорганических компонентов в водных растворах на основе гравиметрического и спектрального методов;

ГЭТ 176-2019 ГПЭ единиц массовой (молярной, атомной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе кулонометрии;

ГЭТ 196-2019 ГПЭ единиц массовой (молярной) доли и массовой (молярной) концентрации компонентов в жидких и твердых веществах и материалах на основе спектральных методов;

ГЭТ 208-2019 ГПЭ единиц массовой (молярной) доли и массовой (молярной) концентрации органических компонентов в жидких и твердых веществах и материалах на основе жидкостной и газовой хромато-масс-спектрометрии с изотопным разбавлением и гравиметрии.

Метод, обеспечивающий реализацию методики поверки – прямое измерение поверяемым средством величины, функционально связанной с величиной, воспроизводимой стандартным образцом.

Примечания

- 1 При пользовании настоящей методикой поверки целесообразно проверить действие ссылочных документов по соответствующему указателю стандартов, составленному по состоянию на 1 января текущего года и по соответствующим информационным указателям, опубликованным в текущем году.
- 2 Если ссылочный документ заменен (изменен), то при пользовании настоящей методикой следует руководствоваться заменяющим (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

2 Перечень операций поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции		е операции при верке	Номер пункта методики поверки, в соответствии	
таписпование операции	первичной	периодической	с которым выполняется операция поверки	
Внешний осмотр	Да	Да	7	
Подготовка к поверке и опробование	Да	Да	8	
Проверка соответствия программного обеспечения	Да	Да	9	
Определение метрологиче- ских характеристик: - определение предела детек-				
тирования - определение относительного	Да	Да	10.1	
СКО выходного сигнала; - определение относительного	Да	Да	10.2	
изменения выходного сигнала за 4 часа непрерывной работы	Да	Нет	10.3	
Подтверждение соответствия хроматографа метрологическим требованиям	Да	Да	11	
Оформление результатов поверки	Да	Да	12	

3 Требования к условиям проведения поверки

При проведении поверки соблюдают следующие условия:

- температура окружающего воздуха от 17 до 28 °C;
- относительная влажность воздуха не более 75 %.

4 Требования к специалистам, осуществляющим поверку

- 4.1 К проведению поверки допускаются лица имеющие навыки работы с хроматографами.
 - 5 Метрологические и технические требования к средствам поверки
 - 5.1 При проведении поверки применяют средства поверки по таблице 2.

Таблица 2 – Средства поверки

Операции поверки, требующие применение средств поверки	Метрологические и технические требования к средствам поверки, необходимые для проведения поверки	Перечень рекомендуемых средств поверки
Раздел 3 Требования к условиям проведения поверки	Средства измерений температуры окружающей среды в диапазоне измерений от $+10$ до $+40$ °C, абсл. погрешность не более $\pm 1,0$ °C. Средства измерений относительной влажности воздуха в диапазоне не более 85 %, абсл. погрешность не более ± 5 %.	Прибор комбинированный Testo 608-H1 (регистрационный номер в ФИФ № 53505-13)
Раздел 10 Определение метрологических характеристик, Приложение А	Стандартный образец состава раствора нитрат-ионов с массовой концентрацией от 0,5 до 1,0 г/дм ³ и относительной погрешностью не более 2,0 %.	Стандартный образец состава раствора нитрат-ионов ГСО 7454-98
	Стандартный образец состава раствора ионов натрия с массовой концентрацией от 0,5 до 1,0 г/дм ³ и относительной погрешностью не более 2,0 %.	Стандартный образец состава раствора ионов натрия ГСО 7439-98
	Посуда мерная лабораторная стеклянная по ГОСТ 1770 2 класса точности: колбы мерные наливные вместимостью 50 см³; 100 см³; 1000 см³. Пипетки градуированные по ГОСТ 29227-91 2-го класса точности класса точности класса точности, вместимостью 0,5; 1,0; 5,0 см³, либо дозатор пипеточный одноканальный с допускаемой систематической составляющей основной относительной погрешности не более 2 %.	

- 5.2 При приготовлении контрольных растворов в качестве растворителя используется вода деионизованная.
- 5.3 Допускается применение других средств поверки, обеспечивающих определение метрологических характеристик поверяемых хроматографов с требуемой точностью.
- 5.4 Все средства измерений, используемые при поверке, должны быть поверены, а стандартные образцы иметь действующие паспорта

6 Требования (условия) по обеспечению безопасности проведения поверки

При проведении поверки хроматографов следует соблюдать требования безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76, Правил по охране труда при эксплуатации электроустановок, утвержденных Приказом Минтруда России от 15.12.2020 № 903н, а также требования безопасности, содержащиеся в Руководстве по эксплуатации хроматографов.

7 Внешний осмотр

- 7.1 При внешнем осмотре устанавливают соответствие хроматографов следующим требованиям:
 - отсутствие внешних повреждений (трещин, вмятин и др.), влияющих на работоспособность;
 - исправность органов управления;
 - соответствие маркировки требованиям эксплуатационной документации.
- 7.2 Хроматографы считают выдержавшими внешний осмотр, если они соответствуют указанным выше требованиям.

8 Подготовка к поверке и опробование

- 8.1 Подготовка к поверке
- 8.1.1 Перед проведением поверки следует изучить Руководство по эксплуатации хроматографа (далее РЭ) и настоящую методику, а также обеспечить выполнение требований техники безопасности согласно разделу 6 и выполнение условий проведения поверки согласно разделу 3 методики поверки.
 - 8.1.2 Подготавливают средства поверки, перечисленные в разделе 5.
 - 8.1.3 Подготавливают контрольные растворы согласно Приложению А.
- 8.1.4 Подготавливают хроматограф к работе в соответствии с РЭ. Подключают хроматограф к сети, включают электропитание и прогревают хроматограф в течение 30 мин
- 8.1.5 Подготавливают к приему данных компьютер и программное обеспечение (далее ПО) согласно Руководству пользователя программного обеспечения.
- 8.1.6 Перед выполнением операций по п. 10 настоящей методики поверки требуется удалить хроматографическую колонку, установить вместо колонки капилляр со следующими параметрами: 0,1 (внутр. диаметр) х 1850 мм (длина) либо другой, гарантирующий создание соответствующего противодавления. Допускается использование хроматографической колонки, если это позволяет специфика эксплуатации оборудования и колонки.

П р и м е ч а н и е - Допускается проведение проверки соответствия программного обеспечения (см. раздел 9), не дожидаясь окончания времени прогрева хроматографа.

8.2 Опробование

Опробование хроматографа проводится в автоматическом режиме после включения питания. Результаты опробования считают положительными, если в процессе автотестирования не возникло сообщений об ошибках.

9 Проверка соответствия программного обеспечения

9.1 Запускают ПО стандартными средствами операционной системы. В главном окне ПО последовательно выполняют следующие команды:

Help⇒About⇒вкладка (внизу) System Files →открывается таблица, в которой выбрать строку Versus of application, в которой указана версия ПО.

9.2 Результат проверки считают положительным, если номер версии ПО соответствует идентификационным данным, указанным в разделе «Программное обеспечение» описания типа средства измерений» или выше.

10 Определение метрологических характеристик

- 10.1 Определение относительного СКО выходного сигнала
- 10.1.1 Залить в виалы для автосемплера контрольные растворы нитрат-ионов и ионов натрия с массовой концентрацией $1,0\cdot10^{-2}\,\mathrm{Mr/cm^3}$; произвести 6 последовательных измерений (объем вводимой пробы 25 мкл). В случае отсутствия автосемплера ввод контрольного раствора осуществляется с помощью микрошприца для хроматографии.
- 10.1.2 С помощью программного обеспечения хроматографа рассчитать площади пиков и время удерживания контрольных веществ.
- 10.1.3 Обработать поученные результаты в соответствии с указаниями, приведенными в п.п. 10.1.4 10.1.5.
- 10.1.4 Используя данные, полученные в п. 10.1.3 рассчитать ОСКО выходного сигнала по площади пиков с помощью электронных таблиц (например MS Excel) либо вручную по формуле 1. При этом недостоверные результаты измерений, которые можно оценить как выбросы (см. ГОСТ Р ИСО 5725-1-2002, п. 3.21; ГОСТ Р 8.736-2011), отбраковываются и не учитываются в расчетах. В случае обнаружения выбросов проводят необходимое дополнительное число измерений.

$$S = \frac{100}{X} \sqrt{\frac{\sum_{i=1}^{n} (X_i - X)^2}{n - 1}}$$
 (1)

где: Xi – результат i-го измерения выходного сигнала (площади пика или времени удерживания);

Х - среднее значение параметра выходного сигнала (площади пика или времени удерживания).

n - число измерений.

10.1.5 Используя данные, полученные в п. 10.1.3, рассчитать ОСКО времени удерживания с помощью электронных таблиц (например MS Excel) либо вручную по формуле 1. При этом недостоверные результаты измерений, которые можно оценить как выбросы (см. ГОСТ Р ИСО 5725-1-2002, п. 3.21; ГОСТ Р 8.736-2011), отбраковываются и не учитываются в расчетах. В случае обнаружения выбросов проводят необходимое дополнительное число измерений.

- 10.2 Определение предела детектирования
- 10.2.1 Используя программу управления хроматографом определить уровень (размах) флуктуационных шумов нулевого сигнала ($\Delta_{\rm X}$) на участке хроматограммы, предшествующем выходу контрольного вещества. За уровень флуктуационных шумов нулевого сигнала принимают максимальную амплитуду повторяющихся колебаний нулевого сигнала с периодом не более 20 с (при этом единичные выбросы не учитываются).
- 10.2.2 Залить в виалы для автосемлера контрольные растворы нитрат-ионов и ионов натрия с массовой концентрацией $2,0\cdot10^{-4}\,\mathrm{Mr/cm^3}$ (объем вводимой пробы 25 мкл); произвести 2 последовательных измерения.
- 10.2.3 С помощью программного обеспечения хроматографа рассчитать площади пиков и время удерживания контрольных веществ.
- $10.2.4\,$ Для расчета предела детектирования используют среднее значение площади пика выходного сигнала X_{cp} , полученное в пункте $10.2.3\,$ и значение уровня флуктуационных шумов Δx полученное в пункте 10.2.1.

Предел детектирования в г/см³ рассчитывают по формуле:

$$\mathsf{C}_{\mathsf{M}\mathsf{H}\mathsf{H}} = \frac{2 \times \Delta \mathsf{X} \times G}{\mathsf{X}_{\mathsf{C}\mathsf{p}} \times V} \tag{2}$$

где:

 ΔX – уровень флуктуационных шумов, мкСм/см;

V – скорость элюента, см³/мин;

G – масса контрольного вещества в граммах, $G = C \cdot V_{\text{доз}}$;

C – массовая концентрация контрольного вещества в мг/дм 3 ;

 $V_{{\mbox{\tiny {DO3}}}}-$ объём вводимой пробы контрольного вещества, дм 3 ;

 $X_{\rm cp}$ – среднее значение площади пика, мкСм/см · мин.

- 10.3 Определение относительного изменения выходного сигнала δt за 4 часа непрерывной работы.
- 10.3.1 После выполнения операций по пунктам 10.1 и 10.2 хроматограф не выключать в течение 4-х часов.
- 10.3.2 Через 4 часа непрерывной работы хроматографа повторяют измерения в соответствии с пунктом 10.1.2 и пунктом 10.1.3. Относительное изменение выходного сигнала за 4 часа непрерывной работы хроматографа рассчитывают по формуле:

$$\delta_t = (X_t - X) \cdot 100/X \tag{3}$$

где: Х - среднее значение площади пика (n=6) в начальный момент времени;

 X_t – среднее значение площади пика (n=6) через 4 часа непрерывной работы.

П р и м е ч а н и е - Не допускается отключение хроматографа от сети питания до завершения повторных измерений.

11 Подтверждение соответствия хроматографа метрологическим требованиям

Хроматограф соответствует метрологическим требованиям, указанным в его описании типа, если полученные значения ОСКО площади пика, ОСКО времени удерживания и предела детектирования соответствуют значениям, указанным в таблице 3.

Таблица 3 – Предельные допускаемые значения метрологических характеристик

Наименование характеристики	Значение
Предел детектирования, г/см ³ , не более:	
-по нитрат-ионам	5.10-9
-по ионам натрия	2.10-8
Предел допускаемого относительного среднеквадратичного	
отклонения выходного сигнала, %:	
-по времени удерживания	2,0
-по площади пика	2,0
Пределы допускаемого относительного изменения выход-	
ного сигнала хроматографа (по площади пика) за 4 часа не-	±7,0
прерывной работы, %	

12 Оформление результатов поверки

- 12.1 Данные, полученные при поверке, оформляются в форме протокола в соответствии с требованиями, установленными в организации, проводящей поверку.
- 12.2 Сведения о результатах поверки СИ передают в Федеральный информационный фонд по обеспечению единства измерений в соответствии с порядком проведения поверки средств измерений, предусмотренным действующим законодательством Российской Федерации.
- 12.3 При положительных результатах поверки по заявлению владельца хроматографа или лица, предоставившего хроматограф в поверку. оформляют свидетельство о поверке, подтверждающее соответствие хроматографа метрологическим требованиям в указанным в описании типа. Нанесение знака поверки на хроматограф не предусмотрено.
- 12.4 При отрицательных результатах поверки хроматограф к применению не допускают, по заявлению заказчика выдают извещение о непригодности с указанием причин в соответствии с действующим законодательством Российской Федерации.

Приложение А (обязательное) Методика приготовления контрольных растворов

- 1 Для приготовления контрольных растворов следует применять следующие стандартные образцы и средства измерений:
 - стандартный образец состава раствора ионов натрия (ГСО 7439-98)
 - стандартный образец состава раствора нитрат-ионов (ГСО 7454-98).
- посуда мерная лабораторная стеклянная по ГОСТ 1770 2 класса точности: колбы мерные наливные вместимостью 50 см³; 100 см³; 1000 см³;
- пипетки градуированные по ГОСТ 29227-91 2-го класса точности класса точности, вместимостью 0,5, 1,0, 5,0 см³, либо дозатор пипеточный одноканальный с допускаемой систематической составляющей основной относительной погрешности не более 2 %;
 - вода деионизованная.

Допускается применять для приготовления контрольных растворов другие средства измерений и стандартные образцы, позволяющие приготовить контрольные растворы с относительной погрешностью не хуже, чем указано в таблице A1.

- 2 Приготовление контрольных растворов.
- $2.1\,$ Используя формулу (A.1), производят расчет объема стандартного образца и объема воды, необходимых для получения основного раствора с массовой концентрацией определяемого иона $0.1\,\mathrm{mr/cm^3}$.
- 2.2 Далее, используя формулу (A.1), основной раствор вторично разбавляют до массовой концентрации, требуемой для поверки (см. таблицу A1). При помощи градуированной пипетки или дозатора переносят рассчитанный объем основного раствора в мерную колбу с притертой пробкой вместимостью 100 см³ (или 1000 см³), доливают до метки водой и перемещивают.
- 2.3 Действительное значение массовой концентрации иона в растворе (C_1 , мкг/см³) вычисляют по формуле:

$$C_1 = C_o \cdot \frac{V_o}{V_\kappa},\tag{A.1}$$

- где C_o действительное значение массовой концентрации ионов в стандартном образце (основном растворе) г/см³.
 - V_o Объем стандартного образца (основного) раствора, использованный для приготовления данного раствора.
 - V_{κ} общий объем приготовленного раствора (100 см³ или 1000 см³).

Таблица А1 – Контрольные растворы

Наименование контрольного раствора	Назначение Контрольного раствора	Концентрация контрольного раствора	Относительная погрешность, %, не более
Раствор нитрат ионов	Определение предела детектирования	2,0 ·10 ⁻⁴ мг/см ³	±5,0
Раствор нитрат ионов	Определение относительного СКО выходного сигнала и изменения выходного сигнала за 4 часа непрерывной работы	1,0·10 ⁻² мг/см ³	±3,0
Раствор ионов натрия	Определение предела детектирования	2,0·10 ⁻⁴ мг/см ³	±5,0
Раствор ионов натрия	Определение относительного СКО выходного сигнала и изменения выходного сигнала за 4 часа непрерывной работы	1,0·10 ⁻² мг/см ³	±3,0

Приготовленные контрольные растворы должны быть использованы в течение 24-х часов после приготовления.

Приложение Б (рекомендуемое) Форма протокола измерений

Протокол №	OT	
Наименование СИ:		
Регистрационный номер в ФИФ ОЕИ	, зав.№	, принадлежащий
Обозначение методики поверки		_
Условия проведения поверки		
Температура окружающей среды, °С		
Относительная влажность, %		
Средства поверки		
Результаты поверки		
1. Внешний осмотр		
2. Наименование и версия автономного	программного обесп	ечения
3. Опробование		
4. Определение метрологических характ	еристик хроматогра	фа
4.1 Определение относительного средне	го квалратического с	отклонения выхолного сиг

Таблица 1 - Относительное СКО выходного сигнала

	Значение выходного		Относительное СКО выходного сигнала, %				
№	сигнала		Результаты расчета		Предельное допускаемое значение, не более		
	t _i , мин	Si	По времени По пло-		По времени	По пло-	
			удерживания	щади пика	удерживания	щади пика	
1							
2							
3							
4							
5							
6	6						

нала

4.2 - Определение предела детектирования

Таблица 2- Предел детектирования

Контрольное вещество (концентрация)	Объем вво- димой пробы, мм ³ (мкл)	Масса введенн. контр. веще- ства, г	Уровень флуктуа- ционных шумов (Δ_x) , мкСм/см	Скорость элюента, см ³ /мин	Предел детектиро- вания, г/см ³
Нитрат-ионы (2·10 ⁻⁴ мг/см ³)					
Ионы натрия (2·10 ⁻⁴ мг/см ³)					

Измерения выполнил:
Выводы о соответствии результатов определения метрологических характеристик (MX) хроматографа предъявляемым требованиям (отметить ниже):
□ метрологические характеристики соответствуют предъявляемым требованиям;
□ метрологических характеристик не соответствуют предъявляемым требованиям.