ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализатор концентрации солей в нефти лабораторный АУМ 101

Назначение средства измерений

Анализатор концентрации солей в нефти лабораторный АУМ101 предназначен для измерения массовой концентрации солей в нефти в лабораториях установок комплексной подготовки нефти и учёта товарной нефти.

Описание средства измерений

Принцип работы анализатора основан на кондуктометрическом методе анализа.

Анализатор состоит из первичного преобразователя и блока измерительного.

Первичный преобразователь представляет собой пару плоских электродов с термодатчиком, конструктивно предназначенных для погружения в стаканчик с пробой.

Блок измерительный осуществляет обработку сигналов с первичного преобразователя, индикацию результата, управление работой анализатора и состоит из микроконтроллера, органов индикации и органов управления.

Конструктивно анализатор выполнен в виде лабораторного настольного прибора с органами управления и индикации на лицевой панели. Первичный преобразователь соединяется с блоком измерительным с помощью жгута с разъемом. При проведении измерения в первичный преобразователь устанавливается стаканчик со специально подготовленной измерительной пробой нефти.

Индикация результата измерений – цифровая. Количество рабочих разрядов индикации – четыре. Индикация осуществляется следующим образом:

- на пределе 100 мг/л три разряда и запятая перед одним младшим разрядом;
- на пределе 500 мг/л три разряда;
- на пределе 2000 мг/л четыре разряда.

Пломбирование и клеймение анализатора осуществляется на мастике, залитой в пломбировочную чашку, закрепленную на винте, крепящем кожух корпуса анализатора.

Метрологические и технические характеристики

Диапазон измерения массовой концентрации солей в нефти от 0 до 2000 мг/л с автоматически переключаемыми верхними пределами 100 мг/л, 500 мг/л и 2000 мг/л.

Предел допускаемого значения основной приведенной погрешности по каждому пределу измерения, %, не более ± 4

Предел основной приведенной погрешности блока измерительного, %, не более $\pm 1,5$ Постоянная первичного преобразователя, м $^{-1}$ 6.05 \div 6.17

Контролируемая среда – нефть со следующими характеристиками:

1) температура от плюс 10 до плюс 35 °C;

- 2) плотность от 750 до 950 $\kappa \Gamma/M^3$;
- 3) массовая концентрация солей не более 2000 мг/л;
- 4) объемная доля воды не более 3 %;
- 5) массовая доля сернистых соединений, не более 3,5 %;
- 6) массовая доля механических примесей, не более 0,5 %;
- 7) массовая доля парафина, не более 4 %.

Электрическое питание анализатора	$220 \pm 33/22 \text{ B}, 50 \pm 1 \Gamma$ ц
Потребляемая мощность, ВА, не более	15
Габаритные размеры, мм, не более	
- первичного преобразователя (без соединительного кабеля)	100x100x130
- блока измерительного	290x250x100
Масса анализатора, кг, не более	5
Полный средний срок службы изделия, лет, не менее	10
Средняя наработка на отказ, ч, не менее	15000

Знак утверждения типа

наносится на лицевую панель блока измерительного анализатора методом шелкографии и на титульный лист эксплуатационных документов типографским способом.

Комплектность средства измерений

Комплектность анализатора соответствует таблице:

Наименование	Обозначение	Кол-во
Блок измерительный	СПР.426331.002	1шт.
Первичный преобразователь	Фа5.184.021	1шт.
Комплект ЗИП		1 комплект
Руководства по эксплуатации «АУМ101»	СПР.414311.001 РЭ	1экз.
Паспорт «АУМ101»	СПР.414311.001 ПС	1экз.
Инструкция «Методика поверки АУМ101»		1экз.

Поверка

осуществляется по документу МП 11711-89 «Инструкция «Анализатор концентрации солей в нефти лабораторный АУМ 101. Методика поверки»», утвержденному ВНИИР в 1988 г.

Перечень оборудования необходимого для поверки:

- кондуктометр лабораторный КЭЛ-1M2, $пг \pm 1 \%$;
- магазин сопротивлений P4830/3, кт 0,05/2,5·10 ⁻⁷;
- колбы, цилиндры по ГОСТ 1770-74;
- весы лабораторные ВЛР-200 по ТУ25.06.1131-79, $\Pi \Gamma \pm 0.5$ мГ;
- шкаф сушильный электрический СЭШ-3М по ТУ25.02.7181-74;
- термометр лабораторный 4-Б2 по ГОСТ 400-80;
- весы лабораторные квадратные по ГОСТ 24104-2001, $пг \pm 1$ мг;
- поверочные смеси, приготовленные по методике поверки.

Сведения о методиках (методах) измерений

приведены в разделе 10 «Порядок работы» Руководства по эксплуатации СПР.414311.001 РЭ.

Нормативные и технические документы, устанавливающие требования к анализаторам концентрации солей в нефти лабораторным AУM101

Технические условия ТУ 25-1791.0015-89.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Общество с ограниченной ответственностью «Спецприбор» (ООО «Спецприбор») Адрес: 420029, г. Казань, а/я 89, ул. Сибирский тракт, 34 Тел.: (843) 512-57-42, факс: (843) 512-57-49, e-mail: <u>info@specpribor.ru</u>

Испытательный центр

ГЦИ СИ ФБУ «ЦСМ Татарстан» Аттестат аккредитации ГЦИ № 30065-09 действителен до 01 декабря 2014 г. 420029, г. Казань, ул. Журналистов, 24 тел/факс (843) 291-08-33

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

«___»_____2012 г.

Е.Р. Петросян

МΠ