ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

ЯМР-спектрометры AVANCE

Назначение средства измерений

ЯМР-спектрометры AVANCE предназначены для проведения научных и аналитических (качественных и количественных) исследований сложных соединений, изучения строения и реакционной способности молекул. Форма и положение сигналов в спектрах позволяет определять изомерный состав, проводить конформационный анализ.

Описание средства измерений

ЯМР-спектрометры представляют собой стационарные автоматизированные приборы.

Работа ЯМР-спектрометров основана на принципе ядерного магнитного резонанса. Сигналы ЯМР отображаются в виде спектра и анализируются по двум параметрам – частоте и интенсивности. Анализ частот дает качественную информацию о локальном окружении атома. Интегральная интенсивность сигнала дает количественную информацию о химической структуре.

Для работы ЯМР - спектрометров используются криогенные магнитные системы на основе сверхпроводящих магнитов с индукцией постоянного магнитного поля от 7,05 до 23,5Тл.

Диаметры рабочих отверстий - 52/54/89мм. Выпускаемые приборы имеют рабочие частоты на ядрах водорода 300, 400, 500, 600, 700, 750, 800 и 900 М Γ ц.

Управление процессом измерений осуществляется от внутреннего контроллера и РСсовместимого компьютера с помощью специального программного комплекса. Программируемым образом осуществляется настройка прибора, управление его работой, обработка выходной информации, сохранение и печать результатов.

ЯМР-спектрометр состоит из следующих элементов:

- пульт управления, который включает в себя: основной компьютер, монитор, клавиатуру и виртуальную панель BSMS;
 - консоль электронного оборудования;
- блок магнита, включающий также систему шиммирования (настройки однородности), предусилители (HPPR) и датчик.
- С пульта управления оператором производится управление всеми функциями спектрометра.

Консоль выполнена в виде шкафа и содержит основное электронное оборудование современного цифрового спектрометра:

- систему контроля сбора данных (AQS), включающую синтезатор частоты, импульсный генератор; аналого-цифровой преобразователь;
- блок управления системой стабилизации магнитного поля (BSMS) и блок управления шиммирующей системой;
 - устройство переменной температуры (VTU);
 - различные усилители (радиочастотный усилитель, приемник).

Различные устройства блока **AQS** генерируют радиочастотные импульсы для возбуждения образца и позволяют получить, усилить и оцифровать сигналы ЯМР, которые излучает образец. Блоку AQS принадлежит полный контроль управления спектрометром в ходе исследований.

Управление блоком **BSMS** осуществляется с клавиатуры или при помощи программы.

Основная функция устройства VTU — изменение температуры образца в заданном режиме или поддержание постоянного значения температуры.

Основная функция усилителей (передатчиков) – принять входящий сигнал и усилить его количественно.

Сверхпроводящий магнит создает магнитное поле, необходимое для передачи ЯМР.

Магнит является чрезвычайно чувствительным к внешним вибрациям прибором. Для подавления таких нежелательных воздействий магнит оснащен демпферной системой.

Система шиммирования служит для создания высокой однородности магнитного поля.

Основная функция предусилителя HPPR состоит в усилении сигналов, посылаемых образцом и регистрируемых на выходе из датчика.

Датчик служит для передачи импульсов возбуждения к образцу, а также для приема излучаемого им сигнала.

Для помещения, извлечения и вращения анализируемого образца в ЯМР-спектрометре используется сжатый воздух.

Общая схема работы прибора выглядит таким образом:

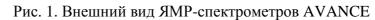
При помощи пневматического лифта образец помещается в датчик. Управляющий компьютер генерирует команду для импульсного генератора, который вырабатывает радиочастотный сигнал определенной формы частоты. Этот сигнал подается на вход линейного усилителя, с выхода которого попадает на радиочастотный контур датчика. После импульса регистрируемый в колебательном контуре сигнал усиливается в предусилителе и передается на основной усилитель. Усиленный сигнал при помощи аналого-цифрового преобразователя преобразуется в цифровой вид и конвертируется в конечный вид, т.е. в спектр ядерного магнитного резонанса.

ЯМР - спектрометры могут комплектоваться в дополнение к базовым моделям широким набором дополнительных устройств и принадлежностей.

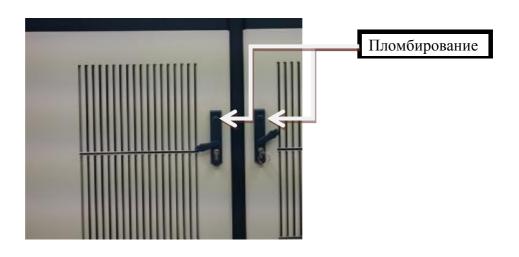
Программное обеспечение реализуется в операционных средах Windows и Linux. Оно позволяет задавать и контролировать режимы анализа, рассчитывать результаты измерений, вводить и выводить накопленную информацию и представлять ее в виде таблиц, графиков, спектров, тестовых файлов и т.д. По специальному заказу спектрометры дополнительно комплектуются библиотеками одно- и двумерных спектров ряда веществ, что позволяет проводить идентификацию исследуемых образцов.

Программное обеспечение

Спектрометры ЯМР оснащены единым программным обеспечением TopSpin, которое управляет работой прибора и отображает, обрабатывает и хранит полученные данные.


Таблица -1. Идентификационные данные программного обеспечения.

тиолици т. пдентификационивае данивае программиного обеспе тения.				
Идентификационные данные (признаки)	Значения			
	для Windows	для Linex		
Идентификационное наименование ПО	TopSpin	TopSpin		
Номер версии (идентификационный номер) ПО	3.2 pl6 и выше	3.2 pl6 и выше		
Цифровой	d1b708620edca6b11b6f85fc8b8c4bb4	e30fdc25bfb5138563a472fe5cdc909f		
идентификатор ПО	(для файла cpr.exe)	(для файла срг)		
Алгоритм вычисления				
цифрового	MD5	MD5		
идентификатора ПО				


Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «низкий» по Р 50.2.077-2014.

Влияние программного обеспечения спектрометров учтено при нормировании метрологических характеристик.

Внешний вид ЯМР-спектрометров AVANCE приведен на рис.1

Метрологические и технические характеристики

	Τ
Максимальная индукция магнитного поля (в зависимости от применяемого магнита), Тл	7,0523,50
Диаметр теплого отверстия (в зависимости от применяемого магнита), мм	52, 54, 89
Стабилизация магнитного поля	цифровая
Внешний диаметр ампул с образцами, мм	5,8 и 10
Количество независимых частотных каналов	28
Точность задания частоты радиочастотного сигнала, Гц	±0,001
Точность задания фазы радиочастотного сигнала, град.	±0,05
Детектирование сигнала	цифровое
Цифровое разрешение	16 бит / 1 МГц
Пределы допускаемой абсолютной погрешности измерений химического сдвига сигнала	±0,2·10 ⁻⁸
Пределы допустимой относительной погрешности измерений интенсивности сигнала (пик кривых спектра), %	±0,3
Соотношение сигнал:шум (в зависимости от применяемого датчика)	105:1 – 920:1
Диапазоны изменения температуры измеряемых образцов, (в градусах Цельсия, °С):	- 150 +150 -269 +1200
Погрешность установления температуры образцов, К	±0,1
Напряжение питания переменного тока, В	220(+10/-15%)
Потребляемая мощность (в зависимости от комплектации), кВА	1,26,5
Габаритные размеры (зависят от комплектации) - магнита, минимальные, см - консоли с электроникой, см	72x72x192 45x71x91
Масса (в зависимости от спецификации), кг	420-8500
Условия эксплуатации: - температура, °C - стабильность поддержания температуры, °C	1828
а) в районе магнитаб) в районе консоли (управляющей электроники)	±1 ±2
- влажность, %	4080 без
Условия транспортирования и хранения - температура, °C - влажность, %	-20 40 °C 2080 % без конд.
Срок службы, лет	8

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации и на переднюю часть корпуса приборов.

Комплектность средства измерений

Комплект поставки определяется заказом и отражается в спецификации. Основной комплект включает:

НАИМЕНОВАНИЕ	ПРИМЕЧАНИЕ
ЯМР -спектрометр	
Сверхпроводящий магнит с принадлежностями	в том числе по отдельному заказу
Консоль (система управляющей электроники спектрометра)	в том числе по отдельному заказу
Система охлаждения и термостатирования датчика	в том числе по отдельному заказу
Датчик ЯМР	в том числе по отдельному заказу
Система микротомографии	в том числе по отдельному заказу
Рабочая станция на основе персонального компьютера	в том числе по отдельному заказу
Программное обеспечение	в том числе по отдельному заказу
Комплект инструментов	в том числе по отдельному заказу
Комплект запасных частей	в том числе по отдельному заказу
Руководство по эксплуатации	
Методика поверки	

Поверка

Осуществляется по документу МП 16733-09 «ЯМР-спектрометры AVANCE. Методика поверки», утвержденному ГЦИ СИ ФГУП ГНТЦ «Инверсия» в декабре 2009 г.

Основные средства поверки:

- 1%-ный раствор хлороформа в дейтерированном ацетоне;
- 0,1%-ный раствор этилбензола в дейтерированной хлороформе;
- весы лабораторные по ГОСТ 24104-2001;
- набор пипеток по ГОСТ 20292-74;
- колбы по ГОСТ 1770-74.

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений изложены в документе «Спектрометр ЯМР AVANCE. Руководство пользователя»

Нормативные и технические документы, устанавливающие требования к ЯМРспектрометрам AVANCE

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия»

Техническая документация компании «Bruker BioSpin GmbH», Германия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при выполнении работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Изготовитель

Компания "Bruker BioSpin GmbH", Германия. Адрес: Silberstreifen 4, D-76287, Rheinstetten, Тел.: +49(721)5161-0, факс: +49(720)5171-01

Заявитель

Общество с ограниченной ответственностью «Брукер» (ООО «Брукер»)

Адрес: 119017, Москва, ул. Пятницкая д.50/2, стр.1. Тел.: +7(495) 517-92-84, факс: +7(495) 517-92-86.

Испытательный центр

ОАО ФНТЦ "Инверсия" 107031, г. Москва, ул. Рождественка, 27,

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев М.п. «___» ____2015 г.