

Термопреобразователи частотные кварцевые ТЧК 012

Внесены в Государственный реестр средств измерений Регистрационный № <u>18134-99</u> Взамен № ______

Выпускаются в соответствии с ТУ 4211-012-23477532-98.

Назначение и область применения

Термопреобразователи частотные кварцевые ТЧК 012 (в дальнейшем - термопреобразователи) предназначены для измерений температуры и разности температур и применяются на объектах промышленности

Описание

Принцип действия термопреобразователей основан на зависимости частоты кварцевых резонаторов, входящих в состав первичных преобразователей, от температуры окружающей среды. Для измерений разности температур используется пара термопреобразователей.

Термопреобразователь состоит из погружаемой монтажной части, выполненной в виде стальной трубы с переменным диаметром, и головки. В конце трубы размещен первичный преобразователь, а в головке электронный узел, который крепится в ней двумя гайками М4 и соединен с первичным преобразователем с помощью гибкого неразъемного кабеля.

Соединение термопреобразователя с внешними цепями осуществляется при помощи трехконтактной колодки, расположенной на электронном узле. Вывод соединительных проводов из головки осуществляется через гермоввод.

Электронный узел содержит два автогенератора, смеситель и стабилизатор напряжения.

По устойчивости к механическим воздействиям термопреобразователи соответствуют группе 3, а по устойчивости к воздействию температуры окружающей среды исполнению С 4 по ГОСТ 12997-84.

Основные технические характеристики.

Диапазон измерений разности температур, °Сот 0 до 160.
Пределы допускаемой основной погрешности измерений разности температур, °C:
для термопреобразователя класса 1
в диапазоне от 0 до 50 °С $\pm (0,1+0,005\times \Delta t);$
в диапазоне от 50 до 160 °С± 0,35,
где Δt - диапазон измерений разности температур.
Пределы допускаемой основной погрешности измерений разности температур, °C:
для термопреобразователя класса 2
в диапазоне от 0 до 50 °С \pm (0,2 + 0,006 × Δ t);
в диапазоне от 50 до 160 °C + 0.5

Пределы допускаемой основной погрешности измерений температуры, $^{\circ}$ С..... \pm (0,15 + 0,001 × t), где t - измеренная температура.

Статическая характеристика каждого термопреобразователя, входящего в комплект определяется формулой:

 $t = A_1 \times (F - F_0) + A_2 \times (F - F_0)^2 + A_3 \times (F - F_0)^3$,

где: F – частота выходного сигнала при измеряемой температуре, Гц;

 F_0 – частота выходного сигнала при температуре 0 °C, Γ ц;

А₁, А₂, А₃-- коэффициенты статической характеристики комплекта.

Значения коэффициентов статической характеристики термопреобразователей представлены в таблице.

F_0, Γ_{Π}	А ₁ , °С/Гц	A_2 , $C/\Gamma \mu^2$	A ₃ , °С/Гц ³	
450 ± 50	от 0,5 до 0,6	$(2,6 \div 3,2) \times 10^{-4}$	$(0 \div 4) \times 10^{-7}$	
Напряжение питания от сети постоянного тока, В				
Потребляемый ток, А, не более25.				
Амплитуда выходного сигнала, В, не менее				
Показатель тепловой инерции, с				
Пределы дополнитель	ной погрешности изг	мерений температуры,	вызванной влиянием	
изменения напряжения питания $\pm 0,5$ от основной погрешности.				
Пределы дополнительной погрешности, вызванной воздействием переменного магнитного поля				
частотой 50 Γ ц и напряженностью 400 $A/м$ \pm 0,5 от основной погрешности.				
Средний срок службы, лет, не менее				
Масса, кг, не более				
Габаритные размеры, мм, не более				
Рабочие условия эксплуатации:				
- температура окружающего воздуха, ${}^{\rm o}{\rm C}$ от минус 40 до 60.				
- относительная влажность воздуха при температуре 35 °C, %				

Знак утверждения типа

Знак утверждения типа наносится на маркировочную табличку, установленную на аппаратуре, фотохимическим способом и на титульном листе руководства по эксплуатации типографским способом.

Комплектность

В комплект поставки входят: термопреобразователь ТЧК 012 (2 шт.), одиночный комплект ЗИП, комплект эксплуатационной документации, методика поверка.

Поверка

Поверка термопреобразователей проводится в соответствии с документом «Термопреобразователи частотные кварцевые ТЧК 012. Методика поверки», утвержденным начальником ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ, согласованным руководителем ГЦИ СИ ВНИИМС и входящим в комплект поставки.

Средства поверки: термометр ртутный стеклянный для точных измерений ТР-1, ТР-2, частотомер электронно-счетный вычислительный Ч3-64, источник питания постоянного тока Б5-44A, осциллограф С1-68.

Межповерочный интервал - 2 года.

Нормативные и технические документы

ГОСТ 12997-84 «Изделия ГСП. Общие технические условия и требования».

ГОСТ 8.558-93 «ГСИ. Государственная поверочная схема для средств измерений температуры».

Технические условия ТУ 4211-012-23477532-98.

Заключение

Тип термопреобразователей частотных кварцевых ТЧК 012 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

Изготовитель

3АО «Термоавтоматика», 141006, г. Мытищи, Олимпийский проспект, 42.

Генеральный директор ЗАО «Термоавтоматика»

Е.Ю.Орлов

