
Подлежит публикации в открытой печати

СОГЛАСОВАНО

Руководитель ГЦИ СИ,

Тестеры интерфейсных сигналов

ТИС-E1,E2,E3

Внесены в Государственный реестр средств измерения

Регистрационный № 21110 - 10

Взамен №

Выпускаются по техническим условиям ЯЕАК 468212.005 ТУ.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Тестеры интерфейсных сигналов ТИС-Е1,Е2,Е3 (далее приборы) предназначены для измерения параметров цифровых потоков на первичной сети ВСС России со скоростью передачи 2048 кбит/с, 8448 кбит/с, 34368 кбит/с и применяются для настройки, наладки и обслуживания цифровых систем передачи информации РDH и SDH, имеющих стыки Е1, Е2, Е3.

ОПИСАНИЕ

Тестер интерфейсных сигналов ТИС-Е1,Е2,Е3 включает в себя генератор испытательных сигналов, анализатор характеристик ошибок в сигналах цифровых стыков Е1, Е2, Е3, генератор-измеритель фазовых дрожаний в сигнале первичного стыка Е1 и обеспечивает проведение измерений с перерывом связи по шлейфу и направлению, а также без перерыва связи.

Передающая часть прибора формирует испытательные сигналы в коде HDB-3 и AMI со скоростью передачи 2048 кбит/с, 8448 кбит/с, 34368 кбит/с со структурой цикла в соответствии с Рекомендациями МСЭ-Т G. 704, G. 742 (или G. 745) и G. 751 (или G. 753).

Приемная часть прибора анализирует структуру испытательного сигнала, обнаруживает и выделяет дефекты сигнала, битовые, кодовые ошибки и ошибки цикловой синхронизации.

Прибор ТИС-E1,E2,E3 обеспечивает ввод и измерение фазовых дрожаний в сигнале E1 2048 кбит/с в соответствии с рекомендациями МСЭ-T О.171, О.172.

Параметры цифровых сигналов 2048 кбит/с, 8448 кбит/с, 34368 кбит/с соответствуют шаблонам импульсов для стыков E1, E2, E3, установленным ГОСТ 26886-86.

Информация об установленных режимах работы, выборе измеряемых параметров и полученных результатах измерений отображается на экране дисплея.

Прибор имеет возможность дистанционного управления по стыку RS-232 от персонального компьютера при использовании специального программного обеспечения.

По устойчивости к климатическим и механическим воздействиям тестер интерфейсных сигналов ТИС-E1,E2,E3 относится к группе 3 ГОСТ 22261-94.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Скорость передачи испытательного сигнала, кбит/с: для стыка E1 для стыка E2 для стыка E3	2048 8448 34368
Пределы основной относительной погрешности скорости передачи	±10·10 ⁻⁶
Пределы относительной погрешности скорости передачи в рабочих условиях: для стыка E1	±30·10 ⁻⁶
для стыка E2 для стыка E3	±20·10 ⁻⁶ ±15·10 ⁻⁶
Диапазон расстройки скорости передачи относительно номинального значения:	
для стыка E1 для стыка E2 для стыка E3	$\pm 50 \cdot 10^{-6}$ $\pm 30 \cdot 10^{-6}$ $\pm 20 \cdot 10^{-6}$
Внешняя синхронизация от сигнала напряжением от 0,5 В до 1,5 В и частотой, Гц:	
для стыка E1 для стыка E2 для стыка E3	2048000 ± 100 8448000 ± 250 34368000 ± 700
Код входного и выходного сигнала	HDB-3, AMI

соответствуют шаблону по ГОСТ 26886-86 для стыка Е1 Параметры импульсов выходного сигнала 8448 и 34368 кбит/с на нагрузке (75 \pm 0,8) Ом

Параметры импульсов выходного сигнала 2048 кбит/с на нагрузке (75 ± 0.8 ; 120 ± 1.2) Ом

соответствуют шаблону по ГОСТ 26886-86 для стыков Е2, Е3

Тестер обеспечивает ввод фазовых дрожаний в испытательный сигнал 2048 кбит/с

Размах собственного фазового дрожания выходного сигнала, ТИ (тактовый интервал), не более

0,05

Диапазон генерируемого размаха фазовых дрожаний, ТИ, не менее:

— в интервале частот фазовых дрожаний $10~\Gamma \mu - 900~\Gamma \mu$ 10,0 — в интервале частот фазовых дрожаний $18~\kappa \Gamma \mu - 100~\kappa \Gamma \mu$ 0,5

— в интервале частот фазовых дрожаний 900 Γ ц — 18 к Γ ц 9/Fд, где Fд - частота фазовых дрожаний в к Γ ц

Пределы допускаемой погрешности установки размаха фазовых дрожаний на частотах фазовых дрожаний от $10~\Gamma$ ц до $100~\kappa$ Гц, TИ

 $\pm (0,08A + 0,02),$ где A - установленное значение размаха фазовых дрожаний

Тестер обеспечивает измерение размаха фазовых дрожаний испытательного сигнала 2048 кбит/с

Диапазон измерения размаха фазовых дрожаний, ТИ, не менее:

в интервале частот фазовых дрожаний 20 Гц – 900 Гц
 в интервале частот фазовых дрожаний 18 кГц – 100 кГц
 0,5

 в интервале частот фазовых дрожаний в интервале 900 Гц – 18 кГц

9/F_д, где F_д - частота фазовых дрожаний в кГц

Пределы допускаемой погрешности измерения размаха фазовых дрожаний, ТИ:

- на частоте фазовых дрожаний 1,0 к Γ ц $\pm (0,05A + 0,03)$

- на остальных частотах $\pm (0,07A + 0,03)$

где A – измеренное значение размаха фазовых дрожаний

Тестер обеспечивает прием стыкового сигнала Е1 2048 кбит/с:

- с отклонением тактовой частоты относительно номинальной на $\pm 50\cdot 10^{-6}$;
- с затуханием от 0 до 6 дБ на частоте 1024 кГц;
- с ослаблением до 30 дБ от защищенных контрольных точек;
- с фазовым дрожанием размахом:
 - 1,5 ТИ в диапазоне частот фазовых дрожаний 20 2400 Гц,
 - 0,2 ТИ в диапазоне частот фазовых дрожаний 18 100 кГц и
 - 3,5/ $F_{\rm Д}$ ТИ в диапазоне частот фазовых дрожаний 2,4 к $\Gamma_{\rm U}$ 18 к $\Gamma_{\rm U}$ (где $F_{\rm Z}$ частота фазовых дрожаний)

Тестер обеспечивает прием стыкового сигнала Е2 8448 кбит/с:

- с отклонением тактовой частоты относительно номинальной на $\pm 30 \cdot 10^{-6}$;
- с затуханием от 0 до 6 дБ на частоте 4224 кГц;
- с ослаблением до 30 дБ от защищенных контрольных точек:
 - 1,5 ТИ в диапазоне частот фазовых дрожаний 20 2400 Гц,
 - 0,2 ТИ в диапазоне частот фазовых дрожаний 3 400 кГц и
 - $0,6/F_{\text{Д}}$ ТИ в диапазоне частот фазовых дрожаний 0,4 к $\Gamma_{\text{Ц}}-3$ к $\Gamma_{\text{Ц}}$ (где $F_{\text{Д}}$ частота фазовых дрожаний)

Тестер обеспечивает прием стыкового сигнала ЕЗ 34368 кбит/с:

- с отклонением тактовой частоты относительно номинальной на $\pm 20\cdot 10^{-6}$;

- с затуханием от 0 до 12 дБ на частоте 17184 кГц;
- с ослаблением до 30 дБ от защищенных контрольных точек;
- с фазовым дрожанием размахом:
 - 1,5 ТИ в диапазоне частот фазовых дрожаний 100 1000 Гц,
 - 0,15 ТИ в диапазоне частот фазовых дрожаний 10 800 кГц и
 - 1,5/ $F_{\rm Д}$ ТИ в диапазоне частот фазовых дрожаний 1,0 к Γ ц 10 к Γ ц (где $F_{\rm Д}$ частота фазовых дрожаний)

Затухание несогласованности входов Е1 тестера, дБ,

:
,

на частотах 51 кГц – 102 кГц	12,0
на частотах 102 кГц – 2048 кГц	18,0
на частотах 2048 кГц – 3072 кГц	14,0

Затухание асимметрии выхода и входа Е1, дБ, не менее

в диапазоне частот от 102 кГц до 2048 кГц 34

Затухание несогласованности входа Е2 тестера, дБ,

не менее:

на частотах 211 кГц – 422 кГц	12,0
на частотах 422 кГц – 8448 кГц	18,0
на частотах 8448 кГц – 2762 кГц	13,0

Затухание несогласованности входа Е3 тестера, дБ,

не менее:

на частотах 860 кГц – 1720 кГц	12,0
на частотах 1720 кГц – 34368 кГц	18,0
на частотах 34368 кГц – 51550 кГц	14,0

Выходное сопротивление канала Е1 прибора (с устройст-

вом симметрирующим), Ом $75 \pm 15 (120 \pm 24)$

Выходное сопротивления каналов E2 и E3 прибора, Ом 75 ± 15

Тестер обеспечивает ввод калиброванных ошибок в диапазоне:

– битовых		$1 \cdot 10^{-2} - 1 \cdot 10^{-9}$
– кодовых		$1 \cdot 10^{-2} - 1 \cdot 10^{-9}$
– цикловых		$1 \cdot 10^{-2} - 1 \cdot 10^{-6}$
– ошибочных	бит по процедуре CRC-4	одиночные
– ошибочных	: Е-бит	олиночные

Тестер обеспечивает регистрацию и счет ошибок от 0 до 9999999999:

- по нарушению алгоритма кода
- по нарушению бит испытательной последовательности
- циклового синхросигнала
- по процедуре CRC-4
- Е-бит

Тестер обеспечивает вычисление коэффициентов ошибок в диапазоне от $1.0 \cdot 10^{-2}$ до $1.0 \cdot 10^{-20}$:

- по нарушению алгоритма кода;
- по нарушению бит испытательной последовательности;
- цифрового синхросигнала;

- по процедуре CRC-4;
- Е-бит

Тестер обеспечивает регистрацию, счет числа и индикацию результатов счета для секундных интервалов с ошибками и дефектами следующих типов:

- секунды с ошибками (ES);
- секунды, пораженные ошибками (SEC);
- секунды СИАС;
- секунды потери цикла;
- секунды отсутствия сигнала на входе

Тестер обеспечивает вычисление следующих коэффициентов ошибок в диапазоне от 1,0 до $0.01 \cdot 10^{-9}$:

- коэффициент ошибок по секундам с ошибками (ECR);
- коэффициент ошибок по секундам, пораженными ошибками (SESR);
- коэффициент ошибок по блокам с фоновой ошибкой (BBER)

Масса прибора, кг, не более	3,5
Габаритные размеры, мм, не более	380×220×120
Питание:	
 напряжение переменного тока, В 	220^{+33}_{-22}
– частота, Гц	$50 \pm 2,5$
Потребляемая мощность, Вт, не более	10,0
Средняя наработка на отказ, ч, не менее	10000
Условия эксплуатации:	
- температура окружающего воздуха, °C	5 – 40
– относительная влажность воздуха, %, не более	90 при t=25°C

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на лицевую панель тестера интерфейсных сигналов ТИС-E1,E2,E3 и на эксплуатационную документацию.

КОМПЛЕКТНОСТЬ

Комплект поставки тестера интерфейсных сигналов ТИС-Е1, Е2, Е3:

- 1. Тестер интерфейсных сигналов ТИС-Е1, Е2, Е3.
- 2. Руководство по эксплуатации ЯЕАК 468212.005 РЭ.
- 3. Дискета с программным обеспечением.
- Кабель КС-06.
- 5. Вилка симметричная трехконтактная.
- Кабель КС-07.
- 7. Устройство симметрирующее УС-Е1, Е2.

- 8. Коаксиальный тройник СР-50-95ФВ.
- 9. Нуль-модемный кабель для подключения к ПК.
- 10. Шнур питания прибора.
- 11. Кабель высокоомный КС-14.

ПОВЕРКА

Поверка тестера интерфейсных сигналов ТИС-E1,E2,E3 проводится в соответствии с методикой поверки, согласованной ГЦИ СИ Тест-С.-Петербург в марте 2010, изложенной в разделе 10 Руководства по эксплуатации ЯЕАК 468212.005 РЭ.

Основное оборудование, необходимое для поверки:

- анализатор цифровых линий связи ANT-20;

34 Мбит/с
$$\pm 2 \cdot 10^{-6}$$
, 140 Мбит/с $\pm 2 \cdot 10^{-6}$, 155 Мбит/с $\pm 2 \cdot 10^{-6}$

ΠΓуст
$$A_{\phi \pi} \pm (0.003 + 0.01 \cdot A_{\phi \pi}) 0.01 - 2UI_{pp}$$

ΠΓуст
$$A_{Φπ} \pm (0.01 + 0.01 \cdot A_{Φπ}) 1 - 20UI_{pp}$$

ПГизм
$$A_{\phi_n} \pm (0.03 + 0.05 \cdot A_{\phi_n})$$
 2,8 Мбит/с

ПГизм
$$A_{\phi n} \pm (0.05 + 0.05 \cdot A_{\phi n})$$
 34 – 155 Мбит/с,

где: $A_{\phi A}$ – размах фазового дрожания, UI_{p-p} ;

- частотомер электронно-счетный Ч3-63/1, 0,1 Γ ц 1500 М Γ ц, $\Pi\Gamma$ ±5·10⁻⁷;
- осциллограф С1-97, полоса пропускания 0 − 350 МГц,

$$K_o = 5^{\text{MB}}/_{\text{дел}} - 0.5^{\text{B}}/_{\text{дел}} \pm 3\%$$

 $K_p = 1^{\text{HC}}/_{\text{дел}} - 0.1^{\text{C}}/_{\text{дел}} \pm 3\%$;

- тр 1 /дел 0,1 /дел ±3 /0,
- магазин затуханий M3-50-2, 0-50 М Γ ц, 0-70 д $\overline{\text{Б}}$, $\Pi\Gamma \pm 0,1$ д $\overline{\text{Б}}$;
- генератор сигналов высокочастотный Г4-158, 10 кГц 100 МГц, ПГ $\pm 0,001$ %, 10^{-7} 2 B, ПГ ± 1 дБ.

Межповерочный интервал – 1 год.

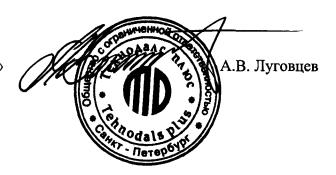
НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 26886-86 «Стыки цифровых каналов передачи и групповых трактов первичной сети EACC. Основные параметры».

Технические условия ЯЕАК 468212.005 ТУ «Тестер интерфейсных сигналов ТИС-E1,E2,E3».

ЗАКЛЮЧЕНИЕ


Тип тестера интерфейсных сигналов ТИС-E1,E2,E3 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен при выпуске из производства и в эксплуатации.

ИЗГОТОВИТЕЛЬ: ООО «Технодалс плюс»

Адрес: 197376, г. С.-Петербург, ул. Проф. Попова, д. 23.

Тел/факс 313-21-03, 677-94-40.

Генеральный директор OOO «Технодалс плюс»

