

Датчики температуры 248

Внесены в Государственный реестр средств измерений Регистрационный N_{\odot} 28033-04

Выпускаются по технической документации фирмы «Emerson Process Management», «Rosemount Inc.», США.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Датчики температуры 248 предназначены для измерения температуры жидких и газообразных сред путем преобразования сигнала первичного преобразователя температуры измерительным преобразователем в унифицированный токовый или цифровой (по протоколу HART) выходной сигнал.

Датчики температуры применяются в системах сбора и обработки информации, управления распределенными объектами регулирования и управления технологическими процессами в различных отраслях промышленности.

Датчики температуры могут использоваться при температуре окружающей среды от минус 51 до плюс 85 $^{\circ}$ C и относительной влажности воздуха до 99 % (без образования конденсата).

ОПИСАНИЕ

Датчики температуры состоят из первичного преобразователя температуры (термопреобразователя сопротивления (TC) или термоэлектрического преобразователя (TII)) и измерительного преобразователя.

Первичный преобразователь температуры состоит из измерительной вставки с платиновым чувствительным элементом (ЧЭ) с HCX Pt100 по МЭК 751 (ГОСТ 6651-94) или термопарой в качестве ЧЭ с HCX J, K по МЭК 584-1-95 (ГОСТ Р 8.585), помещенной в защитный корпус (нержавеющая сталь AISI 321, инконель 600) с алюминиевой или из нержавеющей стали головкой.

Измерительный преобразователь конструктивно выполнен в корпусе с расположенными на нем клеммами для подключения первичного преобразователя, напряжения питания и клеммами для вывода выходного сигнала. Преобразователь обеспечивает аналого-цифровое преобразование первичного сигнала от чувствительного элемента, обработку результатов преобразования и цифро-аналоговое преобразование в стандартный выходной сигнал 4-20 мА с наложением цифрового протокола НАКТ. Монтаж преобразователей осуществляется в соединительной головке, смонтированной непосредственно вместе с первичным преобразователем температуры.

Датчики комплектуются дополнительными защитными гильзами (литыми и трубчатыми), изготовленными из нержавеющей стали AISI 316L и из стали AISI 316Ti.

Датчики температуры могут иметь исполнение по взрывозащите «взрывонепроницаемая оболочка» или «искробезопасные цепи».

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Диапазон измерений, основная погрешность* и дополнительная погрешность датчика температуры от изменения температуры окружающей среды от нормальной (20 °C) в диапазоне от минус 51 до плюс 85 $^{\rm O}$ C в зависимости от типа HCX первичного преобразователя температуры приведены в таблице 1.

Таблина 1

					таолица т
		Мини-	Пределы допускае-	Основная	Дополни-
		мальный	мого отклонения со-	погрешность	тельная
Тип	Диапазон	интервал	противления (т.э.д.с)	измеритель-	погрешность
HCX**	измерений, °С	измере-	от НСХ (в темпера-	ного преоб-	/ 1 °C
		ний	турном эквиваленте) ТС (ТП), ^О С	разователя, ^О С	
				±0,1 % (от ин-	± 0,004 % (от
Pt100	-50 450	10 ^O C	$\pm (0.3 + 0.005 t).$	тервала изме-	интервала из-
				рений) или	мерений) или
				± 0,2 °C ***	± 0,006 °C
			± 1,5 (от минус 40 до		
J	-40 750		375 °C);	$\pm 0,1 \%$ или	± 0,004 %
		_	$\pm 0,004$ t (св. 375 до	± 0.5 $^{\circ}$ C	или ± 0,016
		25 ^O C	750 °C).		^O C
			\pm 1,5 (от минус 40 до	$\pm 0,1 \%$ или	± 0,004 %
K	-40 1000		375 °C);	± 0,5 °C	или ± 0.02
			± 0,004t (св. 375 до		оС
			1000 °C).		

Примечания:

(*) Предел допускаемой основной погрешности датчика температуры ($\Delta_{\rm om}$, ^{O}C) вычисляется по формуле: $\Delta_{\rm om} = \sqrt{\Delta_{TC(T\Pi)}^{-2} + \Delta_{M\Pi}^{-2}}$,

где: $\Delta_{TC(TH)}$ - предел допускаемого отклонения сопротивления или т.э.д.с от HCX (в температурном эквиваленте) первичного преобразователя температуры, ${}^{O}C$;

 $\Delta_{{\scriptscriptstyle M}{\scriptscriptstyle \Pi}}$ - основная погрешность измерительного преобразователя, ${}^{\scriptscriptstyle O}C$.

(**) Типы НСХ термопреобразователей сопротивления и термоэлектрических преобразователей по МЭК751/ГОСТ 6651 и МЭК60584-1/ГОСТ Р 8.585 соответственно.

(***) За основную и дополнительную погрешность берут большее из этих значений.

Предел абсолютной погрешности автоматической компенсации температуры свободных (холодных) концов термопары, ${}^{\rm O}{\rm C}$: $\pm\,0.5$.

Напряжение питания, В: 12...42,4; 18,1...40 (для цифровой связи по протоколу HART). Сопротивление нагрузки (для цифровой связи по протоколу HART), Ом: 250 ... 1100.

Соотношение между напряжением источника питания и сопротивлением внешней нагрузки: R=40.8(E-12).

Дополнительная погрешность от изменения номинального напряжения питания: $\pm 0,005\%$ (от интервала измерений) / 1В.

Монтажная длина датчика температуры (в зависимости от исполнения), мм: $50.8 \div 457.2$. Масса датчика температуры (в зависимости от типа защитной головки), г: $240 \div 524$.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист инструкции по эксплуатации типографским способом.

комплектность

В комплект поставки входит:

- датчик температуры (исполнение по заказу);
- инструкция по эксплуатации;
- методика поверки.

По дополнительному заказу:

- коммуникатор HART.

ПОВЕРКА

Поверка датчиков температуры производится в соответствии с документом «Датчики температуры 248. Методика поверки», разработанным и утверждённым ГЦИ СИ ВНИИМС, октябрь 2004г.

Основные средства поверки:

- эталонный 2 разряда платинородий-платиновый ТП типа ППО;
- однозначная мера электрического сопротивления эталонная Р3030, 10 Ом, кл.0,002;
- предизионный преобразователь сигналов «ТЕРКОН», предел допускаемой абсолютной погрешности $\pm (0.0005 + 5*10^{-5} \text{ U}) \text{ мB}$;
- цифровой прецизионный термометр сопротивления DTI-1000, предел допускаемой абсолютной погрешности: $\pm\,0.03\,^{\rm O}$ C (от минус 50 до 300 °C); $\pm\,0.1\,^{\rm O}$ C (св. 300 до 650 $^{\rm O}$ C);
- термостат жидкостной «TEPMOTECT-100», диапазон рабочих температур от минус 30 до 100 $^{\rm o}$ C; термостат жидкостной «TEPMOTECT-300», диапазон рабочих температур от 100 до 300 $^{\rm o}$ C
- калибраторы температуры цифровые серии ATC-R и CTC, диапазон воспроизводимых температур от минус 48 до 1200 $^{\circ}$ C;
- малоинерционная трубчатая печь МТП-2М;
- коммуникатор HART или иной программно-аппаратный комплекс с поддержкой протокола HART, позволяющий визуализировать измеренную преобразователем температуру и перенастроить измерительный преобразователь на иной диапазон и тип первичного преобразователя.

Межповерочный интервал - 2 года.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 8.558-93	ГСИ. Государственная поверочная схема для средств измерений темпе-
	ратуры.
ГОСТ 12997-84	Изделия ГСП. Общие технические условия.
МЭК 751	Промышленные датчики платиновых термометров сопротивления.
ГОСТ 6651-94	Термопреобразователи сопротивления. Общие технические требования
	и методы испытаний.
МЭК 60584-1	Термопары. Часть 1. Градуировочные таблицы.
ГОСТ Р 8.585-2001	Термопары. Номинальные статические характеристики преобразования.

Техническая документация фирмы-изготовителя.

ЗАКЛЮЧЕНИЕ

Тип датчиков температуры 248 утверждён с техническими и метрологическими характеристиками, приведёнными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

изготовители:

Фирма «Rosemount, Inc.», США

8200 Market Blvd., Chanhassen, MN 55317 USA; 12001 Technology Drive, Eden Prairie, MN 55344, USA.

Фирма «Emerson Process Management Temperature GmbH», Германия Frankenstrasse 21, D-63791 Karlstein, Germany.

Фирма «Emerson Process Management Asia Pacific Pte Ltd», Сингапур Measurement Division, 1 Pandan Crescent, Singapore, 128461, Republic of Singapore

заявитель:

Московское представительство фирмы «Emerson Process Management AG» Россия, 115114 г. Москва, ул. Летниковская, д. 10, стр. 2 Тел. (095) 981 981 1, факс (095) 981 981 0

Начальник лаборатории ГЦИ СИ ВНИИМС

Е.В. Васильев