ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

рН-метры рН-150МИ и иономеры модификаций рХ-150МИ, рХ-150.1МИ и рХ-150.2МИ

Назначение средства измерений

рН-метры рН-150МИ и иономеры модификаций рХ-150МИ, рХ-150.1МИ и рХ-150.2МИ (далее - приборы) предназначены для измерения показателя активности ионов водорода (рН), показателя активности других одновалентных и двухвалентных ионов (рХ), окислительновосстановительного потенциала (Еh) и температуры (t) водных растворов, а также для непосредственного измерения рН мяса и мясопродуктов.

Описание средства измерений

Приборы состоят из:

- первичных измерительных преобразователей: измерительных электродов, электродов сравнения (далее электродная система) и термодатчиков;
 - вторичных измерительных преобразователей (далее преобразователь);
 - комплекта принадлежностей для выполнения измерений.

Работа преобразователей основана на преобразовании электродвижущей силы (ЭДС) электродной системы, термодатчика и других первичных датчиков в пропорциональное по величине напряжение, преобразуемое в дальнейшем в сигналы информации, индицируемые на цифровом отсчетном устройстве (например, рН, рХ, температура и др.).

рН-метры модели рН-150МИ предназначены для измерения рН, Eh, и t в водных растворах, а также непосредственного измерения рН мяса и мясопродуктов в производственных условиях.

В зависимости от вида определяемых ионов, иономеры модели pX-150MИ изготавливаются в трех исполнениях:

pX-150MИ - предназначен для измерения pH, pX и массовой концентрации (cX) других одновалентных и двухвалентных ионов, Eh и t водных растворов.

pX-150.1 МИ - предназначен для измерения pX и массовой доли (cX) нитрат-ионов, а также t в водных растворах проб растительной, пищевой продукции, почв, природных и сточных вод.

pX-150.2MИ - предназначен для измерения pX и массовой концентрации (cX) ионов натрия, а также pH и t в химически обессоленной воде и конденсате пара котлов высокого давления и турбин, а так же для использования в системах химического контроля за состоянием H^+ -катионитовых фильтров.

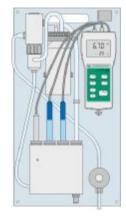


Рис.1. Фотография внешнего вида pH-метров pH-150MИ и иономеров модификаций pX-150MИ, pX-150.1MИ и pX-150.2MИ.

Метрологические и технические характеристики

Диапазоны измерений и цена наименьшего разряда цифрового отсчетного устройства (дискретность) преобразователя приведены в таблице 1.

Таблица 1

Измеряемая величина -		Модификация прибора				
		рН-150 МИ	рХ-150МИ	рХ-150.1МИ	рХ-150.2МИ	
ЭДС электродной	Дискретность	1	1	-	1	
системы и окис-	Диапазон	от минус	от минус	-	от минус	
лительно-восста-	измерений	2000 до	2000 до плюс		2000 до	
новительный по-		плюс 2000	2000		плюс 2000	
тенциал, мВ						
Показатель актив-	Дискретность	0,01	0,01	-	0,01	
ность ионов водо-	Диапазон	от минус	от минус	-	от 0,00	
рода, рН	измерений	1,00 до плюс	20,00 до		до 14,00	
		14,00	плюс 20,00			
Показатель актив-	Дискретность	-	0,01	0,01	0,01	
ность ионов, рХ	Диапазон	-	от минус	от минус	от 0,00	
	измерений		20,00 до	20,00 до	до 14,00	
			плюс 20,00	плюс 20,00		
Массовая концен-	Диапазон	-	от 0,1 мг/л		от 0,1 мкг/л	
трация ионов, сХ	измерений		до 99,9 г/л		до 99,9 г/л	
Массовая доля				от $0,1$ мг/кг		
нитрат-ионов, сХ				до 99,9 г/кг		
Температура ана-	Дискретность	1	0,1	0,1	0,1	
лизируемой сре-	Диапазон	от минус 10	от минус 10,0	от минус	от 0,0	
ды, °С	измерений	до плюс 100	до плюс	10,0 до плюс	до 100,0	
			100,0	100,0		

Примечание - Диапазоны измерений приборов в режимах рH, рX и сX приводятся в эксплуатационной документации, находятся внутри диапазонов показаний преобразователей и определяются диапазонами измерений конкретных типов электродов, используемых с прибором.

Пределы допускаемой основной абсолютной погрешности приведены в таблице 2: Таблица 2

	Пределы допускаемой основной абсолютной по-					
Измеряемая величина	грешности					
измеряемая величина	рН-150МИ	рХ-150МИ	рХ-150.1МИ	pX-		
				150.2МИ		
Показатель активности ионов водорода, рН:						
преобразователь	± 0,02	$\pm 0,02$	-	$\pm 0,03$		
прибор	± 0,05	$\pm 0,05$	-	± 0,3		
Показатель активность одновалентных ионов,						
pX:						
преобразователь	-	$\pm 0,02$	± 0,02	$\pm 0,02$		
прибор	-	-	± 0,05	$\pm 0,15$		
Показатель активность двухвалентных ионов,						
pX:						
преобразователь	-	$\pm 0,04$	-	-		

Haven saves a savey	Пределы допускаемой основной абсолютной по- грешности				
Измеряемая величина	рН-150МИ	рХ-150МИ	рХ-150.1МИ	pX- 150.2MИ	
ЭДС, окислительно-восстановительный					
потенциал, мВ:					
преобразователь	± 3	±3	-	± 3	
Температура анализируемой среды, °С:					
преобразователь	± 2	± 1,0	± 1,0	± 1,0	
прибор	± 2	± 2,0	± 2,0	$\pm 2,0$	

Питание преобразователей осуществляется от автономного источника, состоящего из четырех элементов напряжением от 1,25 B до 1,5 B (допускается применение любого другого автономного источника с напряжением от 5 до 6 B).

Предусмотрено так же питание преобразователей через блок сетевого питания от сети однофазного переменного тока напряжением (220 ± 22) В.

Потребляемая мощность от сети переменного тока при номинальном напря-	8,0
жении питания, ВА, не более	
Габаритные размеры, мм, не более	200x95x55
Масса, кг, не более:	
- преобразователя	0,3
- прибора	2
Средняя наработка на отказ, ч, не менее	9000
Средний срок службы, лет	10.

Условия эксплуатации:

- диапазон температуры окружающего воздуха, °С	от 5 до 40;
- относительная влажность воздуха, %	до 90 при 25 °C;
- диапазон атмосферного давления, кПа	от 84 до 106,7;
MM DT.CT.	от 630 до 800.

Знак утверждения типа

наносится на корпус преобразователя в виде наклейки и на формуляр методом компьютерной графики.

Комплектность средства измерений

Комплектность приборов приведена в таблице 3.

	Таблица	3
--	---------	---

			Модификац	ия прибора	
Наименование	Обозначение	pH-	pX-	pX-	pX-
		150МИ	150МИ	150.1МИ	150.2МИ
Преобразователь	ГРБА.414338.001	1			
	ГРБА.414338.002		1		
	ГРБА.414338.002-01			1	
	ГРБА.414338.002-02				1
Комплект сменных	ГРБА.414932.001	1			
частей (электроды,	ГРБА.414932.002		1		
включенные в Госре-	ГРБА.414932.003			1	
естр СИ и др.)	ГРБА.414932.004				1

		-	Модификац	ия прибора	
Наименование	Обозначение	pH-	pX-	pX-	pX-
		150МИ	150МИ	150.1МИ	150.2МИ
Комплект инструмен-	ГРБА.414934.001	1			
та и принадлежностей	ГРБА.414934.002		1		
(в том числе блок се-	ГРБА.414934.002-01			1	
тевого питания)	ГРБА.414934.002-02				1
Формуляр	ГРБА.414318.001ФО	1			
	ГРБА.414318.002ФО		1		
	ГРБА.414318.002-01ФО			1	
	ГРБА.414318.002-02ФО				1
Руководство по экс-	ГРБА.414318.001РЭ	1			
плуатации	ГРБА.414318.002РЭ		1		
	ГРБА.414318.002-01РЭ			1	
	ГРБА.414318.002-02РЭ				1
Примечание – Формуляр включает методику поверки					

Поверка

осуществляется по документам:

- рН-метр рН-150МИ. Формуляр ГРБА.414318.001ФО, Приложение А "Методика поверки";
- Иономер рХ-150.2.МИ. Формуляр ГРБА.414318.002-02ФО, Приложение А "Методика поверки":
- Иономер рХ-150МИ. Формуляр ГРБА.41.4318.002ФО, Приложение А "Методика поверки";
- Иономер рХ-150.1МИ. Формуляр ГРБА.414318.002-01ФО, Приложение А "Методика поверки":

согласованными ГЦИ СИ ФГУ "Менделеевский ЦСМ" (Центральное отделение) 20 августа $2009 \, \Gamma$.

Основные средства поверки:

- буферные растворы рабочие эталоны рН 2-го разряда, ГОСТ 8.120-99;
- химические реактивы или ГСО состава водных растворов (катионов и анионов);
- калибратор напряжения постоянного тока, ГОСТ 8.027-2001;
- магазин сопротивлений, диапазон изменений сопротивления от 0 до 10⁴ Ом, класс 0,02;
- термометры ртутные, диапазоны измерений от 0 до 50 °C, от 50 до 100 °C, цена деления 0,5 °C.

Сведения о методах (методиках) измерений

РД 52.24.361-2008 Массовая концентрация хлоридов в водах. Методика выполнения измерений потенциометрическимским методом с ионселективным электродом.

РД 52.24.360-2008 Массовая концентрация фторидов в водах. Методика выполнения измерений потенциометрическим методом с ионселективным электродом

РД 52.24.495-2005 Водородный показатель и удельная электрическая проводимость вод. Методика выполнения измерений электрометрическим методом

ГОСТ 29270-95 Продукты переработки плодов и овощей. Методы определения нитратов

РД 52.24.367-2010 Массовая концентрация нитратов в водах. Методика выполнения измерений потенциометрическим методом с ионселективным электродом

ГОСТ 4386-89 Вода питьевая. Методы определения массовой концентрации фторидов.

РД 52.24.365-2008 Массовая концентрация натрия в водах. Методика выполнения измерений потенциометрическим методом с ионселективным электродом.

Нормативные и технические документы, устанавливающие требования к рН-метрам рН-150МИ и иономерам модификаций рХ-150МИ, рХ-150.1МИ и рХ-150.2МИ

ГОСТ 8.120-99 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений рН

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ТУ 4215-051-89650280-2009 «pH-метры pH-150МИ и иономеры модификации pX-150МИ, pX-150.1МИ и pX-150.2МИ».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении деятельности в области охраны окружающей среды;
- при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Общество с ограниченной ответственностью «Измерительная техника»

(ООО «Измерительная техника»)

Адрес: 111020, г. Москва, ул. Сторожевая, д. 31

Телефон/факс: (495) 232-49-74, 232-42-14 (многоканальные) E-mail: <u>izmteh@izmteh.ru</u>, Интернет: <u>http://www.izmteh.ru</u>

Испытательный центр

ФБУ «ЦСМ Московской области»

Юрид.адрес: 141570, пгт Менделеево, Солнечногорский район, Московская область

Телефон: (495) 994-2210, факс: 8 (495) 994-2211

E-mail: info@mencsm.ru

Аттестат аккредитации ФБУ «ЦСМ Московской области» по проведению испытаний средств измерений в целях утверждения типа № 30083-2014 от 07.02.2014 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

			Ф.В. Булыгин
1.п.	"	"	2014 г.