ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Вольтамперфазометры «ПАРМА ВАФ®-Т»

Назначение средства измерений

Вольтамперфазометры «ПАРМА ВА $\Phi^{\text{®}}$ -Т» (далее по тексту – прибор, ВА Φ) предназначены для измерения:

- действующих значений напряжения и силы переменного тока синусоидальной формы;
 - частоты переменного тока и напряжения;
 - угла сдвига фаз между напряжением и током.

Описание средства измерений

Принцип действия ВАФ, основан на преобразовании сигналов измеряемых величин в частоту или меандр для последующей передачи в микроконтроллер.

Измерительный канал кроме аналогичных устройств формирования сигналов для определения сдвига фаз, содержит два преобразователя напряжение-частота, служащих для непосредственного измерения значений силы тока и напряжения.

Все сформированные сигналы поступают на микроконтроллер, где производится их программная оценка и выбор режима работы на основании установленных приоритетов. Результаты измерений выводятся на дисплей.

ВАФ является переносным электронным измерительным прибором, состоящим из измерительного блока и измерительных клещей. Измерительный блок выполнен в изолированном корпусе из ударопрочной пластмассы. Для сохранности и удобства при работе ВАФ помещен, в рабочую сумку, служащую также для хранения клещей и аксессуаров.

Прибор может применяться при проведении точных измерений, испытаниях защит генераторов, трансформаторов, для измерений нагрузки вторичных цепей трансформаторов тока и напряжения, для наладки фазочувствительных схем релейной защиты и др.

Программное обеспечение

Характеристики программного обеспечения (далее по тексту – ΠO) приведены в таблице 2.

Системное ПО ВАФ (встроенное) реализовано аппаратно и является метрологически значимым.

Встроенное программное обеспечение ВАФ может быть проверено, установлено или переустановлено только на заводе-изготовителе с использованием специальных программно-технических устройств.

Таблица 1 – Характеристики программного обеспечения

		Номер		Алгоритм
Наименование ПО	Идентифика-	версии	Цифровой идентификатор	вычисления
	ционное	(идентифи-	ПО (контрольная сумма	цифрового
110	наименова-ние ПО	кационный	исполняемого кода)	идентифика
		номер) ПО		тора ПО
VAFT-06.RU	VAFT-06	ver.06	7CA300A2FB5C026E14CE	m.d5
VAI-1-00.KU	VAI 1-00		268022E15BFC	md5

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – «С» в соответствии с МИ 3286-2010.

Рисунок 1 — Внешний вид и схема пломбирования от несанкционированного доступа (1 — Место для нанесения оттиска клейм)

Метрологические и технические характеристики

Диапазоны измеряемых величин, а также пределы допускаемых основных погрешностей измерений приведены в таблице 2.

Метрологические характеристики нормированы с учетом влияния программного обеспечения.

Таблица 2 – Диапазоны измерений и пределы допускаемых основных погрешностей

	<u> </u>	T - 7 - 7 - 1		-
Измеряемый параметр	Ед.	Диапазон	Пределы допускаемой основной погрешности при измерении	
измеряемый параметр	изм.	измерения		
			относительной,	абсолютной
Действующее значение	В	от 0,02 до 5		$\pm (0.001 \cdot X + 0.01)^{1}$
напряжения переменного тока	Б	от 6 до 460		$\pm (0.005 \cdot X + 0.22)$
Действующее значение силы	۸	от 0 002 на 6		$\pm (0.005 \cdot X + 0.002)^{2}$
переменного тока	A	от 0,002 до 6		±(0,003·A +0,002)
Частота измеряемого	Гц	от 45 до 65	±0,1	
напряжения		01 43 д0 03	±0,1	_
Частота измеряемой силы тока	Гц	от 45 до 65	$\pm 0,1^{3)}$	
Угол сдвига фаз между напряжением и током градус		от -180 до 180		±3,6 ⁴⁾
		01-100 до 180		±3,0 ′

где - Х – измеренное значение напряжения (силы тока).

¹⁾ При частоте измеряемого напряжения переменного тока от 49 до 51 Гц.

²⁾ При частоте измеряемой силы тока от 49 до 51 Гц.

³⁾ При действующем значении силы переменного тока не менее 20 мА.

⁴⁾ При действующем значении силы переменного тока не менее 20 мА.

Время установления рабочего режима не более 6 с.

Входное сопротивление канала напряжения диапазона 460 В не менее 750 кОм.

Входное сопротивление канала напряжения диапазона 5 В не менее 19 кОм.

 $BA\Phi$ выдерживает перегрузку в течение 1 минуты по напряжению $2 \cdot U \kappa$, где $U \kappa$ – конечное значение диапазона измеряемого напряжения.

 ${\rm BA\Phi}$ выдерживает перегрузку в течение 1 минуты по току $2\cdot{\rm I}$ к, где ${\rm I}$ к – конечное значение диапазона измеряемой силы тока.

Раскрытие магнитопровода клещей $-(10 \pm 0.5)$ мм.

Напряжение питания:

Электропитание ВАФ осуществляется от сети переменного тока частотой от 45 до 52 Γ ц, напряжением (220 \pm 44) В с коэффициентом нелинейных искажений не более 15 %, или от встраиваемого источника постоянного тока напряжением 6 В (4 гальванических элемента по 1,5 В каждый, по Γ ОСТ Γ МЭК 86-1).

Потребляемая мощность не более:

- 3 В⋅А от сети переменного тока;
- 0,5 Вт от встроенного источника постоянного тока.

Габаритные размеры ВАФ:

- измерительного блока не более 190x70x160 мм,
- измерительного блока и измерительных клещей, упакованных в сумку не более 230x110x170 мм.

Масса ВАФ максимальная:

- измерительного блока не более 1,0 кг,
- измерительного блока и измерительных клещей, упакованных в сумку не более 2,0 кг Средний срок службы не менее 10 лет.

Средняя наработка на отказ – не менее 6000 час.

Среднее время восстановления работоспособного состояния после установления неисправности – 1 час.

Нормальные условия применения ВАФ:

- номинальная температура окружающего воздуха плюс 20 °C;
- допускаемое отклонение температуры окружающего воздуха ±5 °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106 кПа.

Рабочие условия применения ВАФ:

- температура окружающего воздуха от минус 20 до плюс 55 °C;
- относительная влажность воздуха 90 % при 30 °C;
- атмосферное давление от 84 до 106,7 кПа.

Знак утверждения типа

Знак утверждения типа наносится на лицевую панель ВАФ методом лазерной гравировки и на титульном листе формуляра и руководства по эксплуатации.

Комплектность средства измерений

- измерительный блок 1 шт.;
- щупы напряжения 1 пара;

- набор измерительных щупов (универсальный) 1 комплект;
- измерительные клещи 1 шт.;
- сетевой шнур питания 1 шт.;
- руководство по эксплуатации PA1.007.002 PЭ 1 экз.;
- формуляр PA1.007.002 ФО 1 экз.;
- гальванический элемент питания типа R14P 4 шт.;
- сумка 1 шт.

Поверка

осуществляется в соответствии с документом «РА1.007.002 МП «Вольтамперфазометр «ПАРМА ВАФ $^{\$}$ -Т» Методика поверки», утвержденным с ГЦИ СИ ФГУП «ВНИИМС» в декабре 2006 года.

Основные средства поверки приведены в таблице 3.

Таблица 3 – Основные средства поверки

Наименование и тип средства поверки	Требуемые характеристики		
Установка поверочная	Воспроизведение напряжения переменного тока в		
полуавтоматическая УППУ-1М	диапазоне от 0 до 750 В, воспроизведение силы		
	переменного тока от 0 до 10 А в диапазоне частот		
	от 40 Гц до 20 кГц, пределы допускаемой		
	приведенной основной погрешности ±0,03 %.		
Измеритель разности фаз Ф2-34	Пределы измерения фазовых сдвигов от 0 до 360		
	градусов, пределы допускаемой абсолютной		
	основной погрешности измерения фазовых		
	сдвигов $\pm 0,1^{\circ}$.		

Сведения о методиках (методах) измерений

Сведения приведены в руководстве по эксплуатации РА1.007.002 РЭ.

Нормативные и технические документы, устанавливающие требования к вольтамперфазометрам «ПАРМА ВА $\Phi^{@}$ -Т»

- 1. ГОСТ 22261–94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ТУ 4221-015-31920409-2006 Вольтаперфазометр «ПАРМА ВА $\Phi^{\text{®}}$ -Т». Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта;
- при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Общество с ограниченной ответственностью «ПАРМА» (ООО «ПАРМА»), г. Санкт-Петербург.

Адрес: 198216, Санкт-Петербург, Ленинский пр., 140

Телефон (812) 346-86-10, факс(812) 376-95-03

E-mail: parma@parma.spb.ru, http://www.parma.spb.ru

Испытательный центр

Государственный центр испытаний средств измерений Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ГЦИ СИ ФГУП «ВНИИМС»).

Юридический адрес: 119361, г. Москва, ул. Озерная, д. 46.

Тел. 8 (495) 437 55 77; Факс 8 (495) 437 56 66; E-mail: office@vniims.ru.

Номер аттестата аккредитации 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

M.I	Т.	
		2012 -
«	>>	2012 г.