ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки автоматизированные измерительные «Спутник-ОЗНА-ВМ1»

Назначение средства измерений

Установки автоматизированные измерительные «Спутник-ОЗНА-ВМ1» предназначены для прямых и косвенных измерений массы сепарированной сырой нефти (далее — сырая нефть), сепарированной безводной нефти (далее — обезвоженная нефть) и объема свободного нефтяного газа (далее — нефтяной газ), а также для измерений среднего массового расхода сырой нефти, обезвоженной нефти и среднего объемного расхода нефтяного газа, извлекаемых из недр (добываемых из нефтяных скважин).

Описание средства измерений

Установки автоматизированные измерительные «Спутник-ОЗНА-ВМ1» реализуются путем модернизации находящихся в эксплуатации установок автоматизированных типа «Спутник» (далее — установки-реципиенты), выпущенных ОАО «АК ОЗНА» по техническим условиям (далее — ТУ) ТУ 3667-043-00135786-2004 (ТУ 3667-014-00135786-99, ТУ 39-1571-91, ТУ 39-5771770-052-90, ТУ 25-6734002-87, ТУ 39-1061-85) или установок-реципиентов, выпущенных по ТУ других производителей.

Установки-реципиенты подвергаются техническому освидетельствованию в соответствии с рекомендациями по метрологии Р 50.2.052-2006. Подвергаются ремонту (при необходимости) и модернизации по ТУ 3667-089-00135786.УК-2007. Вариант модернизации — 1 (далее - BM1).

После модернизации, в соответствии с рекомендациями Р 50-601-12-89, в структуру условного обозначения конкретной установки-реципиента включается аббревиатура – «ОЗНА-ВМ1», в наименование включается признак – «измерительная».

Установки автоматизированные измерительные «Спутник-ОЗНА-ВМ1» (далее – установки) включают в себя технологический блок (далее – ТБ), аппаратурный блок (далее - БА) и комплект средств жизнеобеспечения.

В состав ТБ входят измерительный и распределительный модули.

Основным элементом измерительного модуля является двухкамерный горизонтальный сепаратор.

Камеры двухкамерных сепараторов выполнены в виде цилиндров, расположенных один над другим.

Верхняя камера, оборудованная циклоном, является первой ступенью сепарации и служит для первичного выделения газа из газожидкостной смеси, а также для осушки нефтяного газа с помощью каплеотбойников, смонтированных в полости этой камеры.

Нижняя камера служит для сбора и отстоя сырой нефти, в процессе которого происходит вторичное выделение нефтяного газа.

Верхняя камера оборудована заслонкой, устанавливаемой в месте подключения к этой камере трубопровода для отвода нефтяного газа (газового трубопровода).

Нижняя камера оборудована люком с поплавковым устройством.

Поплавковое устройство и заслонка механически связаны друг с другом с помощью рычагов и тяги.

На трубопроводе для отвода сырой нефти (жидкостном трубопроводе) из нижней камеры устанавливается регулятор расхода.

Система: поплавок – заслонка – регулятор расхода служит для обеспечения возможности накопления нефтяного газа и сырой нефти в сепараторе и последующего сброса их в коллектор. Этим обеспечивается регулирование величины расхода через расходомеры-счетчики (далее - счетчики) сырой нефти и нефтяного газа, соответствующей их диапазону измерений.

Измерения могут производиться в непрерывном или циклическом режимах.

В качестве регуляторов расхода могут использоваться клапана или шаровые краны.

Причем, в зависимости от диапазона значений величины расхода (дебита) сырой нефти и нефтяного газа, регуляторы расхода могут устанавливаться и на жидкостном и на газовом трубопроводе.

В измерительном модуле для измерений массы и массового расхода сырой нефти используются кориолисовые массовые счетчики различных моделей фирм-производителей: Emerson Process Management, Fisher-Rosemount (США, Голландия), Rota Yokogawa, Endress+HauserGmbH+Co.KG (Германия) и ПО «Нефтегазовые системы» (Россия).

Для измерений объема и объемного расхода нефтяного газа используются кориолисовые массовые счетчики тех же фирм-производителей, а также вихревые счетчики Fisher-Rosemount, ИПФ «Сибнефтеавтоматика» и ГК «Эталонприбор» (Россия).

Сепараторы оборудуются манометрами и измерительными преобразователями давления и температуры.

Для обеспечения измерений массы и массового расхода обезвоженной нефти измерительные модули могут комплектоваться влагомерами ВОЕСН ПО «Нефтегазовые системы», ВСН-ПИК ЗАО «ПИКиКо» или F «Phase Dynamics». Обводненность нефти может также определяться лабораторным (расчетным) методом.

В зависимости от совокупности основных средств измерений, применяемых при модернизации, образующих комплексы средств измерений (далее – КСИ), установки имеют 54 исполнения, которые представлены в таблице 1.

КЛАССИФИКАТОР комплексов средств измерений установок автоматизированных измерительных «Спутник-ОЗНА-ВМ1»

T ~	1
т аолина	
таолина	

Номер	Модель средства измерений			Обозначение	
комплексов	Счетчик	Счетчик	•	Блок измерений	комплексов
средств из-	сырой	нефтяного	Влагомер	и обработки ин-	средств
мерений	нефти	газа	_	формации	измерений
1	2	3	4	5	6
1		CMF, F, R	BOECH		E1
2			ВСН-ПИК		E2
3			«F»		E3
4			BOECH	1	E4
5	CMF, T,	«8800»	ВСН-ПИК		E5
6			«F»		E6
7	F, R		BOECH		E7
8		СВГ.М	ВСН-ПИК	ОЗНА	E8
9			«F»		E9
10			BOECH		E10
11		«V-bar-700»	ВСН-ПИК		E11
12			«F»		E12
13		«Rotamass»	BOECH	БИОИ	R1
14		RCCS(T) 34-39	ВСН-ПИК		R2
15		RCC3(1) 34-39	«F»		R3
16		BOECH		R4	
17	Rotamass»	l l	ВСН-ПИК		R5
18	RCCS		«F»		R6
19	(T)		BOECH		R7
20	34-39/IR	СВГ.М	ВСН-ПИК		R8
21			«F»		R9
22			BOECH		R10
23		«V-bar-700»	ВСН-ПИК		R11
24			«F»		R12

1	2	3	4	5	6
25		D	BOECH		P1
26		«Promass» E, I, F	ВСН-ПИК		P2
27			«F»		P3
28		«8800»	BOECH		P4
29			ВСН-ПИК		P5
30	«Promass»		«F»	ОЗНА	P6
31	E, I, F		BOECH	БИОИ	P7
32		CDEM	ВСН-ПИК		P8
33		СВГ.М	«F»		P9
34			BOECH		P10
35	1	«V-bar-700»	ВСН-ПИК		P11
36			«F»		P12
37		CMF, F, R	BOECH	ОЗНА БИОИ	M1
38			ВСН-ПИК		M2
39			«F»		M3
40		«Rotamass» RCCS(T) 34-39	BOECH		M4
41			ВСН-ПИК		M5
42		KCCS(1) 34-39	«F»		M6
43	Massi	«Promass»	BOECH		M7
44	«Маск»-	E, I, F	ВСН-ПИК		M8
45	-20, 50, 100	L, 1, 1	«F»		M9
46	(вариант	«8800»	BOECH		M10
47	(вариант 1)		ВСН-ПИК		M11
48			«F»		M12
49		СВГ.М	BOECH		M13
50			ВСН-ПИК		M14
51			«F»		M15
52		«V-bar-700»	BOECH		M16
53			ВСН-ПИК		M17
54			«F»		M18

Пример записи обозначения установки автоматизированной измерительной, выполненной на базе установки-реципиента «Спутник АМ-40-10-400» и комплекса средств измерений №1: «Спутник-ОЗНА-ВМ1»-Е1-400.

Примечание.

- 1 Конкретные модели средств измерений, входящие в состав комплекса средств изме-рений, указываются при заказе в разделе «Дополнительные требования» опросных листов.
- 2 Допускается включать в состав комплекса средств измерений влагомеры RFM фирмы «ROXAR» или RED EYE фирмы «WEATHERFORD», имеющие метрологические характеристики не хуже, чем у указанных в графе 4 таблицы.

Экспликация основных средств измерений

Таблица 2

№ ПП	Наименование (обозначение) средства измерений (модели)	Изготовитель (поставщик)	Регистрационный номер в Госреестре
1	Счетчики-расходомеры массовые «Micro Motion» CMF, T, F, R	EM- FR	13425-06
2	Счетчики-расходомеры массовые «Rotamass» RCCS(T) 34-39/IR	RY	27054-04
3	Расходомеры массовые «Promass» E, I, F	ЕН	15201-04

№ ПП	Наименование (обозначение) средства измерений (модели)	Изготовитель (поставщик)	Регистрационный номер в Госреестре
4	Счетчики жидкости массовые «Маск»-20, 50, 100 (вариант 1)	НГС	12182-04
5	Расходомеры-счетчики вихревые «8800»	FR	14663-06
6	II VETUKKI 1939 RUXDERLIE (KI M	ИПФ «Сибнефте- автоматика»	13489-05
7	Расходомеры-счетчики вихревые «V-bar-700»	«Эталонприбор»	14919-05
8	Влагомеры сырой нефти «ВОЕСН»	НГС	32180-06
9	Влагомеры сырой нефти ВСН-ПИК	ЗАО «ПИКиКо»	17747-98
10	Влагомеры поточные «F»	PhD	17713-03

Примечания.

1. Остальные комплектующие средства измерений могут быть любого типа.

В том числе:

- измерительные преобразователи избыточного давления с верхним пределом измерений 6 МПа (для установок с $P_p=4.0$ МПа) и пределами допускаемой относительной погрешности, не более $\pm\,0.5\%$;
- измерительный преобразователь температуры с диапазоном измерений от 0 до 100° C и пределами допускаемой относительной погрешности, не более \pm 1% (на газовый трубопровод допускается не устанавливать);
 - -манометры показывающие с пределами измерения 0-6 МПа, класса точности не ниже 1,5.

Исполнение измерительных преобразователей давления и температуры взрывозащищенное, соответствующее классу взрывоопасной зоны B-1A по ПУЭ.

- 2. Установки вместо влагомеров могут комплектоваться трубными катушками соответствующей конфигурации. При этом обеспечивается резервный канал связи с блоком измерений и обработки информации, для последующей установки влагомера пользователем. До установки влагомера содержание воды в рабочей среде блоком измерений и обработки информации определяет расчетным путем или она определяется лабораторным способом.
- 3. На измерительном трубопроводе переключателя скважин многоходового и жидкостном трубопроводе сепаратора монтируются пробоотборники по ГОСТ 2517-85. По согласованию с владельцем установки-реципиента, на жидкостном трубопроводе сепаратора может быть оставлен существующий счетчик ТОР (регистрационный номер в Госреестре 6965-03) или заменен соответствующей трубной катушкой.

Сокращения, принятые в экспликации основных средств измерений:

EM-FR – «Emerson Process Management, Fisher

RY – «Rota Yokogawa GmbH& CO.KG» EH – «Endress+Hauser GmbH+Co.KG»

НГС – ПО «Нефтегазовые системы»

PhD – «Phase Dynamics»

По признаку номинальной пропускной способности установки имеют два варианта исполнения.

Распределительный модуль ТБ включает в себя входные трубопроводы, переключатель скважин многоходовой, байпасный трубопровод и выходной коллектор.

В состав БА входят блоки измерений и обработки информации (далее - БИОИ) производства «АК ОЗНА» и блоки силового управления установок-реципиентов.

Комплект средств жизнеобеспечения обеспечивает укрытие (далее – ТБ и БА-боксы), обогрев, освещение, вентиляцию и пожаро-газосигнализацию.

Установки имеют два варианта климатического исполнения: У и УХЛ категория размещения 1 по ГОСТ 15150-69.

Метрологические и технические характеристики
Номинальные значения среднего (среднесуточного) массового расхода сырой нефти
(номинальная пропускная способность) в зависимости от типоразмера установки-реципиента, кг/с (т/сут)
Рабочее давление, МПа (кгс /см 2), не более
фактор, M^3/T (в стандартных условиях):
- без замены, при модернизации, сепаратора установки-реципиента
- с заменой (или доработкой) сепаратора установки-реципиента
в рабочих условиях, м ³ /м ³
Вид входных/выходных сигналов БИОИ:
- унифицированные токовые сигналы
 дискретные: «сухой контакт» или «переход коллектор-эмиттер транзистора»; импульсные.
Коммуникационные каналы:
- RS485
Пределы допускаемой относительной погрешности БИОИ, %, не более, при:
- измерениях унифицированных токовых сигналов
- измерениях интервалов времени
- измерениях числа импульсов
- обработке информации 0,05
Пределы допускаемой относительной погрешности установки, %, не более, при:
a) измерениях массы сырой нефти
б)измерениях массы обезвоженной нефти, по поддиапазонам содержания пластовой во-
ды в сырой нефти:
до 70 %
от 70 % до 95 %
свыше 95% - в соответствии с методикой выполнения измерений, утвержденной и
аттестованной в установленном порядке;
в) измерениях объема нефтяного газа
Исполнение электрооборудования установок-реципиентов и вновь устанавливаемого
электрооборудования:
- ТБ-бокса - взрывозащищенное, соответствующее классу взрывоопасной зоны В-1А (ПУЭ).
Категория взрывоопасности и группа взрывоопасных смесей - IIA-ТЗ по ГОСТ Р 51330.11-99,
ΓOCT P 51330.19-99;
- БА-бокса
Остальные технические характеристики – в соответствии с эксплуатационной
документацией установок-реципиентов.

Знак утверждения типа

наносится на металлические таблички, укрепленные на ТБ и БА-боксах, методом фотохимического травления или аппликацией, а также типографским или иным способом - на титульных листах руководства по эксплуатации и паспорта, с указанием номера свидетельства об утверждении типа средства измерений и даты его выдачи.

Комплектность средства измерений

В состав монтируемого оборудования при ремонте и модернизации (далее - ОРМ) входит комплект монтажных частей (далее - КМЧ) и КСИ.

Состав ОРМ определяется дефектной ведомостью и спецификацией к хоздоговору.

Поверка

осуществляется по документу «Инструкция. ГСИ. Установки автоматизированные измерительные «Спутник-ОЗНА- ВМ1». Методика поверки. СВМ1.00.00.00.000 И1, утвержденному ГЦИ СИ ФГУП «ВНИИР» в марте 2008 года.

Основные средства поверки:

- 1. Калибратор-измеритель унифицированных сигналов эталонный ИКСУ-2000А ТУ 4381-031-13282997-00. Диапазон воспроизведения токового сигнала 0...25 мА. Пределы допускаемой абсолютной погрешности в режиме воспроизведения токового сигнала \pm 0,003 мА
- 2. Частотомер электронно-счетный ЧЗ-38 ЕЭ 2.721.087ТУ. Диапазон измерений интервалов времени 0,000001...10000с Пределы допускаемой относительной погрешности измерения интервала времени $\pm 2,5 \times 10^{-7}$ %.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Сведения о методиках (методах) измерений

Метод измерений регламентирован в документе «Рекомендация. ГСИ. Количество извлекаемой из недр нефти и объемы нефтяного газа. Методика выполнения измерений автоматизированными измерительными установками «Спутник-ОЗНА-ВМ1». Свидетельство об аттестации № 109406-08 от 28.03.2008 г., в федеральном реестре зарегистрировано под № Φ P.1.29.2008.04766.

Нормативные и технические документы, устанавливающие требования к установкам автоматизированным измерительным «Спутник-ОЗНА-ВМ1»

ГОСТ 12.2.044-80 «Машины и оборудование для транспортирования нефти. Требования безопасности»

ГОСТ 12.2.063-81 «Арматура промышленная трубопроводная. Общие требования безопасности»

ПБ 08-624-03 «Правила безопасности в нефтяной и газовой промышленности»

Установки автоматизированные измерительные «Спутник-ОЗНА-ВМ1». Технические условия ТУ 3667-089-00135786.УК-2007

Изготовитель

Акционерное общество «ОЗНА – Измерительные системы» (АО «ОЗНА – Измерительные системы»)

ИНН 0265037983

Адрес: 452607, Республика Башкортостан, г. Октябрьский, ул. Северная, 60

Телефон (факс): (34767) 9-50-10

E-mail: ms@ozna.ru

Испытательный центр

ГЦИ СИ Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт расходометрии». Регистрационный номер 30006-09

Адрес: 420088, Республика Татарстан, г. Казань, ул.2-я Азинская, 7А

Телефон: (843)272-70-62, факс: 272-00-32

E-mail: vniirpr@bk.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № 30006-09 от 16.12.2009 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

А.В. Кулешов

М.п. «____»____2018 г.