СОГЛАСОВАНО
Руководитель ГЦИ СИ

ФГУП «ВНИИМ им.Д.И. Менделеева»

Н.И. Ханов

ј Рачя 2009 г.

Блоки детектирования БДМГ-300 Внесены в Государственный реестр средств измерений

Регистрационный <u>№ 39852 - 08</u>

Взамен №

Выпускаются по техническим условиям ТУ 4362-019-11273161-07

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Блоки детектирования БДМГ-300 предназначены для измерения мощности амбиентного эквивалента дозы H*(10) гамма-излучения (далее по тексту - блоки БДМГ-300) и применяются в составе аппаратуры систем радиационного контроля в рабочих и производственных помещениях атомных электростанций (АЭС), на объектах промышленности, нефтегазового комплекса, предприятий ядерно-топливного цикла, а также на предприятиях и учреждениях, работающих с источниками ионизирующих излучений.

ОПИСАНИЕ

Принцип действия блоков детектирования БДМГ-300 основан на взаимодействии гамма-излучения с веществом детекторов (счётчиков Гейгера-Мюллера) и возникновении носителей заряда, которые преобразуются в электрические импульсы, скорость счета которых пропорциональна мощности дозы гамма-излучения окружающей среды.

Блоки детектирования БДМГ-300 могут работать в режиме выдачи информации об измеренном значении в виде последовательности импульсов и в режиме выдачи информа-

ции по интерфейсу RS-485. Отличия в режиме выдачи информации не влияют на метрологические характеристики блоков детектирования.

В режиме выдачи информации об измеренном значении в виде последовательности импульсов импульсы со счетчиков («чувствительного» и «грубого» поддиапазонов) после предварительного усиления поступают на плату для усиления и формирования импульсов длительностью (2 ± 0.5)мкс, амплитудой 4.5В любой полярности, средняя скорость счета которых на выходе пропорциональна измеренному значению мощности амбиентного эквивалента дозы.

Блок детектирования БДМГ-300 при работе в этом режиме обеспечивает передачу сигналов по кабелю с витыми парами типа STP-4 или при нагрузке на эквивалентное сопротивление с волновым сопротивлением (130±5)Ом. Максимальная длина кабеля 500м.

В режиме выдачи информации об измеренном значении по интерфейсу RS-485 блок детектирования БДМГ-300 передает информацию в цифровом виде в единицах измеряемой мощности амбиентного эквивалента дозы (Зв/ч) по протоколу связи DIBUS. Параметры выходных сигналов соответствуют требованиям к сигналам интерфейса RS-485. Максимальная длина соединительного кабеля 1200 м.

Длина соединительного кабеля типа STP-4 с внешним устройством до 1200м.

Электропитание блоков детектирования БДМГ-300 осуществляется от источника питания постоянного тока напряжением от 8 до 42 В. Внутренний преобразователь напряжения вырабатывает напряжение +12 В для питания схемы блока детектирования и высокое напряжение для питания счетчиков.

Внутренний микропроцессор блока детектирования производит вычисление измеренного значения на основе измеренной скорости счета от счетчиков Гейгера- Мюллера с учетом статистического характера распределения импульсов во времени. Микропроцессор также производит линеаризацию счетной характеристики счетчиков математическими методами и обеспечивает обмен информацией по интерфейсу RS-485.

Контроль работоспособности блоков детектирования БДМГ-300 в режиме выдачи информации в виде импульсной последовательности осуществляется при подаче на блок сигнала «Бленкер» от источника питания (6 ± 0.5) В.

При использовании блоков детектирования БДМГ-300 в режиме выдачи информации об измеренном значении по интерфейсу RS-485 проверка функционирования производится

по команде от устройства верхнего уровня. Результат выполнения команды проверки выдается по интерфейсу RS-485 в цифровом виде.

Основные технические характеристики

Основные технические характеристики блоков детектирования БДМГ-300 представлены в таблице 1

Таблица 1

НАИМЕНОВАНИЕ ПАРАМЕТРА	ЗНАЧЕНИЕ
HARMEHODAHAE HALAMETTA	ЗНАЧЕНИЕ
Диапазон регистрируемых энергий гамма-излучения, МэВ	0,060-3
Диапазон измерений мощности амбиентного эквивалента дозы	_
(МАД) гамма-излучения – H^* (10) , 3 в·ч ⁻¹	0,1·10 ⁻⁶ -10
Предел допускаемой основной относительной погрешности	
измерений H^* (10), %	± 20
Энергетическая зависимость чувствительности блоков детек-	
тирования относительно энергии 662 кэВ гамма-излучения ра-	
дионуклида Cs^{137} в диапазоне энергий от 0.06 до 1,25 МэВ, $\%$	не более ±30
Время установления рабочего режима, мин.	не более 1
Время непрерывной работы, ч,	24
и нестабильность показаний блоков детектирования за время	не более 5
непрерывной работы, %	
Габаритные размеры, (диаметр х длина), мм, не более (без держателя)	60 x290
Масса, кг, не более	0,7
(без держателя)	
Мощность, потребляемая блоком детектирования, ВА,	
не более	2
Напряжение питания от источника постоянного тока, В	от 8 до 42
Рабочие условия эксплуатации:	
- температура окружающей среды, ⁰ С	от минус 40 до плюс 70
-относительная влажность, %	до 75% при 50 ⁰ C
- атмосферное давление, кПа	от 86 до 106,7
Дополнительная погрешность измерения МАД, вызванная из-	±5% на каждые 10 ⁰ C от-
менением температуры окружающей среды, не более,	клонения от 20^{0} С

Блоки детектирования БДМГ-300 согласно ГОСТ Р 51318.22-99 относятся к техническим средствам автоматизации (TCA) информационных систем нормальной эксплуатации.

По влиянию на безопасность атомных станций (AC) блоки БДМГ-300 согласно ПН АЭ Г-01-011-97 относятся к третьему классу нормальной эксплуатации и классифицируются как 3H.

Блоки БДМГ-300 в соответствии с $H\Pi$ -031-01 относятся к категории сейсмостойкости II и степени жесткости 3 (проектная высотная отметка — до 70 м).

Блок детектирования БДМГ-300 прочен к воздействию механико-динамических нагрузок, соответствующих условиям транспортирования для группы исполнения N2 ГОСТ 12997.

Степень защиты блока детектирования IP65 по ГОСТ 14254.

По помехоустойчивости блоки детектирования БДМГ-300 относятся к ТС АС, работающим в условиях электромагнитной обстановки средней жесткости, группа исполнения по помехоустойчивости 3 по ГОСТ Р 50746-2000.

Блок детектирования БДМГ-300 отвечает требованиям ГОСТ 12.1.004 по пожарной безопасности. Вероятность возникновения пожара не превышает 10^{-6} в год.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на корпус блока детектирования БДМГ-300 методом шелкографии и на титульный лист Руководства по эксплуатации методом компьютерной графики.

КОМПЛЕКТНОСТЬ

Комплект поставки блоков детектирования БДМГ-300 указан в таблице 2:

Таблица 2

Обозначение	Наименование	Количество
АФБИ.418266.000	Блок детектирования БДМГ-300	1 шт.
АФБИ.301532.002	Держатель	1 шт.

Продолжение таблицы 2

Обозначение	Наименование	Количество
АФБИ.418266.001	Преобразователь интерфейса RS232-RS485/ПИ-	по 1экз. в ад-
	2	рес поставки
	Диск с сервисным ПО	по 1экз. в ад-
		рес поставки
АФБИ.418266.010 ФО	Формуляр	1экз.
АФБИ.418266.010 РЭ	Руководство по эксплуатации	по 1экз.на 10 БДМГ-300, но не менее 1экз.
MII 2103-0002 - 2008	Методика поверки	по 1 экз. в адрес постав- ки

ПОВЕРКА

Поверка блоков детектирования БДМГ-300 при выпуске из производства, в условиях эксплуатации и после ремонта производится в соответствии с документом МП 2103-0002-2008 « Блоки детектирования БДМГ-300 .Методика поверки», утвержденным ГЦИ СИ ФГУП « ВНИИМ им. Д.И. Менделеева» в декабре 2008 г.

Основные средства поверки:

Эталонная 2-го разряда по ГОСТ 8.034-82 поверочная дозиметрическая установка с набором источников гамма-излучения на основе радионуклида 137 Cs в диапазоне мощностей амбиентного эквивалента дозы $\overset{\bullet}{H^*}$ (10) от 0,7 мкЗв/ч до 7 Зв/ч.

Межповерочный интервал -1год.

Поверка может осуществляться территориальными органами Ростехрегулирования и метрологическими службами юридических лиц, аккредитованными в установленном порядке на право поверки данного типа средств измерений.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 27451-87	Средства измерений ионизирующих излучений. Общие технические условия.
ΓΟCT 8. 034-82	ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений экспозиционной дозы, мощности экспозиционной дозы и потока энергии рентгеновского и гамма-излучений.

ТУ 4362-019-11273161-07 Блок детектирования БДМГ-300. Технические условия

ЗАКЛЮЧЕНИЕ

Тип блоков детектирования БДМГ-300 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства, после ремонта и в эксплуатации согласно государственной поверочной схеме по ГОСТ 8.034-82.

Изготовитель:

ЗАО «ИНТРА»

129337, г. Москва, Ярославское шоссе, д. 2, к. 1

тел. (499) 183-0447 факс (499) 182-2638 e-mail: intra@home.ptt.ru

Генеральный директор ЗАО «ИНТРА» MOCKEA MOCKEA

С.Ю. Кузнецов

Руководитель отдела

ГЦИ СИ ФГУП «ВНИИМ им Д.И. Менделеева»

И.А. Харитонов