ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители-регуляторы температуры программируемые МБУ

Назначение средства измерений

Измерители-регуляторы температуры программируемые МБУ (далее по тексту - приборы) предназначены при использовании в качестве первичных преобразователей термопреобразователей сопротивления или термоэлектрических преобразователей для измерения и автоматического регулирования температуры внешних исполнительных устройств, в т.ч. в составе комплекса средств управления различными технологическими процессами термического электрооборудования.

Описание средства измерений

Принцип действия прибора основан на измерении и обработке микропроцессором поступающих на его вход сигналов активного сопротивления постоянному току от термопреобразователей сопротивления и сигналов напряжения постоянного тока от термоэлектрических преобразователей, сравнении их с заданными пользователем параметрами управления и выдачи сигналов управления внешними исполнительными устройствами.

Приборы выпускается в следующих исполнениях: МБУ-01, МБУ-02, МБУ-03, МБУ-04, различающиеся количеством каналов измерения и регулирования, типом выходных цепей управления и конструктивным исполнением.

Конструктивно приборы выполнены в пластмассовых корпусах для щитового монтажа (МБУ-01, МБУ-02, МБУ-04) и настольного исполнения (МБУ-02, МБУ-03). На лицевой панели прибора размещены цифровой индикатор и управляющие кнопки. Клеммы для внешнего подключения расположены на задней панели прибора. Приборы имеют возможность ограничивать выходную мощность и имеют неограниченное время хранения введенной информации после отключения питания. Выходными сигналами приборов являются: состояния контактов электромагнитных реле, симисторных ключей, транзисторных ключей.

Фотографии общего вида приборов приведены на рисунках 1-4:

Рис.1 – Прибор исполнения МБУ-01

Рис.4 – Прибор исполнения МБУ-02

Рис.4 – Прибор исполнения МБУ-03

Рис.4 – Прибор исполнения МБУ-04

Программное обеспечение

Программное обеспечение (ПО) приборов состоит только из ПО, встроенной в корпус модулей МБУ. Разделение ПО на метрологически значимую и незначимую части не реализовано. Метрологически значимой является все встроенное ПО.

Идентификационные данные программного обеспечения приведены в таблице 1: Таблина 1

Наименование программно-	Идентификационное	Номер вер-	Цифровой	Алгоритм
го обеспечения	наименование про-	сии (иден-	идентификатор	вычисления
	граммного обеспе-	тификаци-	программного	цифрового
	чения	онный но-	обеспечения	идентифи-
		мер) про-	(контрольная	катора про-
		граммного	сумма исполня-	граммного
		обеспечения	емого кода)	обеспечения
Встроенная часть про-	MBU01_40(AC).bin	4.0(*)	E2C510500AE89	MD5
граммного обеспечения			4B18C44123940	
для исп. МБУ-01			AF2AE3	
Встроенная часть про-	MBU02_40(E1).bin	4.0(*)	EDFCFFE7B316	MD5
граммного обеспечения			8040EDFB4798C	
для исп. МБУ-02			981E637	
Встроенная часть про-	MBU03_38(90).bin	3.8(*)	276C20813B919	MD5
граммного обеспечения			647141748EB3D	
для исп. МБУ-03			2B7DC8	
Встроенная часть про-	MBU04_41(41).bin	4.1(*)	5DF6AF39F995B	MD5
граммного обеспечения			1D230596D4943	
для исп. МБУ-04			BEE4EA	
Примечание:				
*Допускается применение ПО с номером версии выше указанной в таблице.				

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню:

«А» - для встроенной части ПО.

Не требуется специальных средств защиты, исключающих возможность несанкционированной модификации, обновления (загрузки), удаления и иных преднамеренных изменений метрологически значимой встроенной части ПО СИ и измеренных данных.

Метрологические и технические характеристики

Диапазон измерений приборов при работе с соответствующими первичными термопреобразователями, пределы допускаемых основных приведенных погрешностей измерений и значение единицы младшего разряда приведены в таблице 2:

Таблица 2

таолица 2				
Условное обозначение	Диапазон	Значение еди-	Пределы допускаемой	
НСХ преобразования	измерений,	ницы младшего	основной приведенной	
псл преобразования	°C	разряда, °С	погрешности, %	
Термопреобразователи сопротивления по ГОСТ 6651-2009				
$Pt100 (\alpha=0.00385 {}^{\circ}C^{-1})$	−100+750 °C	0,1 / 1 (*)		
$100\Pi (\alpha=0,00391 \text{ °C}^{-1})$	−100+750 °C	0,1 / 1		
$100M (\alpha = 0.00428 {}^{\circ}\mathrm{C}^{-1})$	−100+200 °C	0,1 / 1		
Cu100 (α=0,00426 °C ⁻¹)	−50+200 °C	0,1	$\pm 0,\!25$	
Pt500 (α=0,00385 °C ⁻¹)	−100+750 °C	0,1 / 1		
500Π (α=0,00391 °C ⁻¹)	−100+750 °C	0,1 / 1		

120

			всего листов о
Условное обозначение	Диапазон	Значение еди-	Пределы допускаемой
НСХ преобразования	измерений,	ницы младшего	основной приведенной
псх преобразования	°C	разряда, °С	погрешности, %
500M (α=0,00428 °C ⁻¹)	−100+200 °C	0,1 / 1	$\pm 0,\!25$
Cu500 (α=0,00426 °C ⁻¹)	−50+200 °C	0,1	
Pt1000 (α =0,00385 °C ⁻¹)	−100+750 °C	0,1 / 1	
1000Π (α=0,00391 °C ⁻¹)	−100+750 °C	0,1 / 1	
$1000M (\alpha=0.00428 {}^{\circ}\mathrm{C}^{-1})$	−100+200 °C	0,1 / 1	
Cu1000 (α=0,00426 °C ⁻¹)	−50+200 °C	0,1	
Термоэлектри	ические преобразов	атели по ГОСТ Р 8	3.585-2001
TXK (L)	0+800	0,1	
TXКн (E)	0+900	0,1	
ТЖК (Ј)	0+1200	0,1 /1	
THH (N)	0+1300	0,1 /1	
TXA (K)	0+1200	0,1 /1	
TΠΠ (S)	0+1600	0,1 /1	$\pm 0,\!25$
ТПП (R)	0+1600	0,1 /1	±0,23
ТПР (В)	+200+ 1800	0,1 /1	
TBP (A-1)	0+2000	0,1 /1	
TBP (A-2)	0+2000	0,1 /1	
TBP (A-3)	0+2000	0,1 /1	
TMK (T)	0+400	0,1	

Примечание:

- высота

Пределы допускаемой дополнительной приведенной погрешности измерения входных параметров приборов, вызванной изменением температуры окружающего воздуха от (20 ± 5) °C (нормальные условия) до от плюс 5 до плюс 50 °C, на каждые 10 °C изменения температуры не должны превышать 0,2 предела допускаемой основной приведенной погрешности.

Пределы допускаемой абсолютной погрешности компенсации ±2
температуры свободных (холодных) концов термопары, °С
Потребляемая мощность, В∙А, не более 10,0
Номинальное напряжение питающей сети (в зависимости от 85 до 264 (переменный ток)

от 85 до 264 (переменный ток) Номинальное напряжение питающей сети (в зависимости от от 7 до 35 (постоянный ток) исполнения прибора), В Частота переменного тока, Гц 50 Электрическое сопротивление изоляции (при температуре 20±5 °С и напряжении 100 В), МОм, не менее: 20 Диапазон задания времени выдержки, мин 0-998, ∞ 0.01-99.9 Диапазон задания скорости нагрева, °С/мин Дискретность задания температуры, °С 1 Дискретность задания времени выдержки, мин 1 Дискретность скорости нагрева, °С /мин 0,1 Время установления рабочего режима прибора, с, не более 300 Количество хранимых в памяти программ, не менее 20 Количество программируемых ступеней в программе, не менее 40 Количество входных измерительных каналов от 1 до 6 Количество каналов управления от 1 до 6 Габаритные размеры приборов, мм, не более: 150 - глубина - ширина 250

^{*} При температурах свыше $1000~^{\circ}$ С и при температуре минус $100~^{\circ}$ С цена единицы младшего разряда равна $1~^{\circ}$ С.

Масса приборов, кг, не более

Рабочие условия эксплуатации приборов:

- температура окружающего воздуха, °С:от плюс 5 до плюс 50
- атмосферное давление, кПа (мм рт. ст.):от 84,0 до 106,7 (от 630 до 800)

В соответствии с ГОСТ 14254-96 по защищенности от воздействия окружающей среды модули относятся к классу IP20 со стороны передней панели.

Знак утверждения типа

Знак утверждения типа наносится на щиток или панель прибора методом фотолитографии или другим способом, не ухудшающим качества прибора, а также на титульный лист паспорта и руководство по эксплуатации типографским способом.

Комплектность средства измерений

В комплектность поставки прибора входят:

Измеритель-регулятор температуры программируемый МБУ

1 шт.

(исполнение в соответствии с заказом)

Руководством по эксплуатации, паспорт М700.00.00.000 РЭ

1 экз.

Комплект монтажных элементов (для приборов МБУ-01, МБУ-02, МБУ-04)

1 компл.

Методика поверки M701.00.00.000 MП

1 экз.

Поверка

осуществляется в соответствии с документом М701.00.00.000 МП «Измерители-регуляторы температуры программируемые МБУ. Методика поверки», утвержденным ГЦИ СИ ФГУП «ВНИИМС», 29 ноября 2011г.

Основные средства поверки:

- калибратор электрических сигналов Метран-510, ПГ воспроизведения сигналов в диапазоне (0-0,1) В: \pm (0,0075% (от измеряемой величины)+5·10 ⁻⁶) В, в диапазоне (0-400) Ом: \pm (0,0075% (от измеряемой величины)+10⁻²) Ом;
 - термометр лабораторный типа ТЛ-4; диапазон измерений от 0 до плюс 50 °C; цд 0,1 °C;
 - мегомметр Ф4102/2-1M; диапазон измерений: 0-2000 MOм; KT 1,5.

Сведения о методиках (методах) измерений приведены в соответствующих разделах Руководства по эксплуатации М700.00.00.000 РЭ.

Нормативные и технические документы, устанавливающие требования к измерителям-регуляторам температуры программируемым МБУ

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

ТУ 3434.016.24662585-11 «Измерители-регуляторы температуры программируемые МБУ. Технические условия».

ГОСТ 8.558-93 ГСИ. Государственная поверочная схема для средств измерений температуры.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта; выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Закрытое акционерное общество «МИУС» (ЗАО «МИУС»)

Адрес: 300005, г.Тула, ул. Васина 34-б

Тел.: (4872) 29-02-33, 39-03-22.

http://www.zaomius.ru/ E-mail: info@zaomius.ru.

Испытательный центр

Государственный центр испытаний средств измерений (ГЦИ СИ) ФГУП «ВНИИМС», г. Москва

Аттестат аккредитации от 27.06.2008, регистрационный номер в

Государственном реестре средств измерений № 30004-08.

Адрес: 119361, г.Москва, ул.Озерная, д.46 Тел./факс: (495) 437-55-77 / 437-56-66.

E-mail: office@vniims.ru, адрес в Интернет: www.vniims.ru

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

			Е.Р. Пет	росян
М.п.	«	» _		2012 г