ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ПС 220 кВ «Т-10»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ПС 220 кВ «Т-10» (далее – АИИС КУЭ) предназначена для измерений активной и реактивной электрической энергии.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерений.

АИИС КУЭ решает следующие задачи:

- автоматическое измерение 30-минутных приращений активной и реактивной электрической энергии;
- периодический (1 раз в 30 минут) и /или по запросу автоматический сбор результатов измерений о приращениях электрической энергии с дискретностью учета (30 мин) и данных о состоянии средств измерений;
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений, данным о состоянии объектов и средств измерений со стороны сервера организаций – участников оптового рынка электроэнергии;
- диагностику и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройку параметров АИИС КУЭ;
- автоматическое ведение системы обеспечения единого времени (COEB), с помощью которой осуществляется введение поправки часов относительно координированной шкалы времени UTC в АИИС КУЭ.

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительные трансформаторы тока (TT) класса точности 0,5S; измерительные трансформаторы напряжения (TH) класса точности 0,5; счётчики типа Альфа А1800 класса точности 0,5S для активной электрической энергии и 1,0 для реактивной электрической энергии, установленные на объектах, указанных в таблице 1.
- 2-й уровень информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя:
- шкаф технологического коммутационного устройства (ТКУ), в состав которого входят два шлюза Е-422, WiFi модем AWK 1100, сетевой концентратор, блоки резервного питания счетчиков, блок питания шкафа, коммутационное оборудование;
- шкаф устройства центральной коммутации (ЦКУ), в состав которого входят WiFi модем AWK 1100, оптический конвертор, сетевой концентратор D-Link, спутниковая станция «SkyEdge PRO», сервер автоматизированного рабочего места (APM ПС);
- шкаф устройства сбора и передачи данных (УСПД) типа ЭКОМ-3000, блок бесперебойного питания;
- устройство синхронизации системного времени (УССВ) на базе GPS-приемника (в составе УСПД ЭКОМ-3000).

3-й уровень – информационно-вычислительный комплекс ИВК АИИС КУЭ ЕНЭС (Метроскоп) (номер в Государственном реестре СИ 45048-10).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по измерительным линиям связи поступают на входы счетчика электрической энергии, с помощью которого производится измерение мгновенных и средних значений активной и реактивной электрической мощности. На основании средних значений электрической мощности измеряются приращения электрической энергии за интервал времени 30 мин.

Цифровой сигнал с выходов счетчиков с помощью цифровых методов передачи данных поступает в ИВКЭ, где осуществляется хранение измерительной информации, ее накопление и передача на третий уровень – ИВК АИИС КУЭ ЕНЭС (Метроскоп). На этом уровне происходит хранение, накопление, подготовка и передача данных с использованием средств электронной цифровой подписи в заинтересованные организации, в том числе ОАО «АТС», ОАО «СО ЕЭС» РДУ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), реализованной с помощью приемников сигналов точного времени. Время в АИИС КУЭ синхронизируется со шкалой координированного времени UTC. Коррекция времени в УСПД производится автоматически один раз в час при условии превышения допускаемого рассогласования ± 2 с. Коррекция времени счетчиков производится при каждом обмене данными с УСПД, при условии расхождения времени между УСПД и счетчиками на ± 2 с и более. Коррекция времени в шлюзах Е-422 и сервере АРМ ПС производится при каждом обмене данными с УСПД при условии расхождения времени на величину ± 2 с. Коррекция времени ИВК производится автоматически при обнаружении рассогласования с временем приемника сигналов точного времени.

Журналы событий счетчиков электрической энергии, УСПД и шлюзов Е-422 отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Механическая защита от несанкционированного доступа обеспечивается пломбированием:

- счетчика электрической энергии;
- промежуточных клеммников вторичных цепей;
- испытательной коробки;
- УСПД;
- шлюзов E-422;
- сервера.

Защита информации на программном уровне обеспечивается:

- установкой пароля на счетчик;
- установкой пароля на УСПД;
- установкой пароля на шлюзы Е-422;
- установкой паролей на сервер, предусматривающих разграничение прав доступа к результатам измерений для различных групп пользователей;
- возможностью применения электронной цифровой подписи при передаче результатов измерений.

Программное обеспечение

Функции программного обеспечения (метрологически не значимой части):

- периодический (1 раз в 30 минут) и/или по запросу автоматический сбор результатов измерений с заданной дискретностью учета (30 минут);
 - автоматическая регистрация событий в «Журнале событий»;

- хранение результатов измерений и информации о состоянии средств измерений в специализированной базе данных;
- автоматическое получение отчетов, формирование макетов согласно требованиям получателей информации, предоставление результатов измерений и расчетов в виде таблиц, графиков с возможностью получения печатной копии;
- использование средств электронной цифровой подписи для передачи результатов измерений в интегрированную автоматизированную систему управления коммерческим учетом (ИАСУ КУ (КО));
- конфигурирование и параметрирование технических средств программного обеспечения;
- предоставление пользователям и эксплуатационному персоналу регламентированного доступа к данным;
- сбор недостающих данных после восстановления работы каналов связи, восстановления питания;
- передача данных по присоединениям в сервера ОАО «ФСК ЕЭС», ОАО «АТС», ОАО «СО ЕЭС» РДУ и другим субъектам ОРЭ, заинтересованным в получении результатов измерений;
 - автоматический сбор данных о состоянии средств измерений;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.д.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ.

Функции программного обеспечения (метрологически значимой части):

- конфигурирование и настройка параметров АИИС КУЭ;
- обработка результатов измерений в соответствие с параметрированием УСПД;
- автоматическая синхронизация времени.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

Наименование	Идентификационное	Номер версии	Цифровой	Алгоритм
программного	наименование	(идентификационный	идентификатор	вычисления
обеспечения	программного	номер) программного	программного	цифрового
	обеспечения	обеспечения	обеспечения	идентификатора
			(контрольная	программного
			сумма	обеспечения
			исполняемого	
			кода)	
	DataServer.exe,			md5 (Хеш
СПО «Метроскоп»	DataServer_USPD. exe	1.00	d233ed6393702747	сумма берется
			769a45de8e67b57e	от склейки
				файлов)

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010 и обеспечивается:

- установкой пароля на счетчик;
- установкой пароля на сервер;
- защитой результатов измерений при передаче информации (использованием электронной цифровой подписи).

Оценка влияния ПО на метрологические характеристики СИ – влияния нет.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ и их метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав измерительных каналов АИИС КУЭ и их метрологические характеристики.

№ точки измере ний	Наимено вание объекта	Состав измерительных каналов (тип, коэффициент, класс точности, регистрационный номер в реестре федерального информационного фонда РФ)			Вид электри ческой	Границы допускаемой относительной погрешности с вероятностью 0,95		
		TT	ТН	Счетчик	УСПД	энергии	основ- ной, %	в рабочих услови- ях, %
1	РП «Юг- Зерно- Т», л.1	ТОЛ- СЭЩ-10-01 800/5 Кл.т. 0,5S №51623-12	НАЛИ- СЭЩ 10-3* 10000/100 Кл.т. 0,5 №51624-12	A1805RLQ- P4GB-DW-4 Кл. т. 0,5S/1,0 №31857-11	ЭКОМ-3000	Актив- ная,	±1,2	±3,4
2	РП «Юг- Зерно- Т», л.2	ТОЛ- СЭЩ-10-01 800/5 Кл.т. 0,5S №51623-12	НАЛИ- СЭЩ 10-3* 10000/100 Кл.т. 0,5 №51624-12	A1805RLQ- P4GB-DW-4 Кл. т. 0,5S/1,0 №31857-11	№17049-04	Реак- тивная	±2,8	±5,6

*В состав трансформатора напряжения антирезонансной трехфазной группы НАЛИ-СЭЩ-10 входят измерительные трансформаторы НОЛ-СЭЩ-10-4 (3 шт.)

Примечания:

- 1. Характеристики погрешности приведены для измерений электрической энергии и средней электрической мощности (получасовой);
- 2. Характеристики погрешности приведены для следующих диапазонов значений влияющих величин нормальных условий эксплуатации:
 - параметры сети: напряжение $(0.98 \dots 1.02)$ Uном; ток $(1 \dots 1.2)$ Іном, $\cos \varphi = 0.9$ инд.;
 - температура окружающей среды (15 ... 25) °C.
- 3. Характеристики погрешности приведены для следующих диапазонов значений влияющих величин рабочих условий эксплуатации:
 - параметры сети: напряжение (0,9 ... 1,1) Uном; ток (0,02 ... 1,2) Іном;
 - температура окружающей среды:
 - для измерительных трансформаторов от минус 40 до +70 °C, для счетчиков типа Альфа A1800 от минус 40 до +65 °C, для УСПД ЭКОМ-3000 от минус 10 до +50 °C.
- 4. Характеристики погрешности в рабочих условиях эксплуатации приведены для I=0,02Iном, $\cos \phi=0,8$ инд и температуры окружающего воздуха в месте расположения счетчиков электрической энергии от +15 до +35 °C.

Пределы допускаемой поправки часов относительно координированной шкалы времени UTC

 \pm 5 c.

Надежность применяемых в системе компонентов:

- счётчик электрической энергии среднее время наработки на отказ не менее $T=120\ 000\ \mathrm{y}$, среднее время восстановления работоспособности $\mathrm{t}\mathrm{b}=2\ \mathrm{y}$;
- УСПД среднее время наработки на отказ не менее $T=75\,000$ ч, среднее время восстановления работоспособности t = 24 ч;
- Шлюз E-422 среднее время наработки на отказ не менее T = 50 000 ч, среднее время восстановления работоспособности t = 24 ч;
- сервер коэффициент готовности K_{Γ} =0,99, среднее время наработки на отказ не менее T=89~000 ч, среднее время восстановления работоспособности $t_B=1$ ч.

Глубина хранения информации:

- счетчик электрической энергии тридцатиминутный профиль нагрузки в двух направлениях, не менее 35 суток; при отключении питания не менее 30 лет.
- УСПД суточные данные о тридцатиминутных приращениях электрической энергии по каждому ИК не менее 35 суток (функция автоматическая); при отключении питания не менее 10 лет.
- Шлюз Е-422 суточные данные о тридцатиминутных приращениях электрической энергии по каждому ИК не менее 45 суток (функция автоматическая); при отключении питания не менее 10 лет.
- ИВК хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматическая).

Знак утверждения типа

Знак утверждения типа наносится вверху слева на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии ΠC 220 кВ «T-10».

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблицах 3-4.

Таблица 3 – Технические средства, входящие в состав АИИС КУЭ

Наименование и условное обозначение		
Трансформаторы тока ТОЛ-СЭЩ-10	6	
Трансформаторы напряжения НОЛ-СЭЩ-10 (в составе НАЛИ-СЭЩ-10)	3	
Счетчики электрической энергии трехфазные многофункциональные A1805-RLQ-		
P4GB-DW-4		
Устройство сбора и передачи данных ЭКОМ-3000	1	
Устройство «Шлюз Е-422»	2	
Коробка испытательная КИ У3	2	
Распределитель интерфейса ПРЗ-11	4	
Выключатель автоматический Acti 9 IC60N		
Догрузочный резистор для трансформаторов тока 4ВА МР3021-Т-5А-4ВА	6	

Таблица 4 – Документация на АИИС КУЭ

Наименование и условное обозначение	Количество
Расширение КРУН-10 кВ для ТП ООО «Юг-Зерно-Т» для нужд филиала ОАО	1
«ФСК ЕЭС» - МЭС Юга». ПС 220/110/27,5 кВ «Т-10». Рабочая документация.	
Пояснительная записка	
Расширение КРУН-10 кВ для ТП ООО «Юг-Зерно-Т» для нужд филиала ОАО	1
«ФСК ЕЭС» - МЭС Юга». ПС 220/110/27,5 кВ «Т-10». Рабочая документация.	
Чертежи	
ПС 220/110/27,5 кВ Т-10 (Расширение КРУН-10 кВ для ТП ООО «ЮГ-ЗЕРНО-Т»)	1
для нужд филиала ОАО «ФСК ЕЭС» - МЭС Юга. АИИС КУЭ ПС 220 кВ «Т-10».	
Инструкция по эксплуатации.	
ПС 220/110/27,5 кВ Т-10 (Расширение КРУН-10 кВ для ТП ООО «ЮГ-3ЕРНО-Т»)	1
для нужд филиала ОАО «ФСК ЕЭС» - МЭС Юга. АИИС КУЭ ПС 220 кВ «Т-10».	
Паспорт-формуляр	

Поверка

осуществляется по документу МП 54078-13 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии ПС 220 кВ «Т-10». Методика поверки», утвержденному ФБУ «Пензенский ЦСМ» 24 мая 2013 г.

Рекомендуемые средства поверки:

- мультиметр «Ресурс-ПЭ». Пределы допускаемой абсолютной погрешности измерений угла фазового сдвига между напряжениями \pm 0,1 °. Пределы допускаемой относительной погрешности измерений напряжения: \pm 0,2 % (в диапазоне измерений от 15 до 300 В); \pm 2,0 % (в диапазоне измерений от 15 до 150 мВ). Пределы допускаемой относительной погрешности измерений тока: \pm 1,0 % (в диапазоне измерений от 0,05 до 0,25 А); \pm 0,3 % (в диапазоне измерений от 0,25 до 7,5 А). Пределы допускаемой абсолютной погрешности измерений частоты \pm 0,02 Гц;
- радиочасы PЧ-011. Пределы допускаемой погрешности синхронизации времени со шкалой UTC (SU) \pm 0,1 с.

Сведения о методиках (методах) измерений

Методика измерений электрической энергии приведена в документе «ГСИ. Методика измерений количества электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ПС 220 кВ «Т-10». Свидетельство об аттестации № 01.00230 / 12 – 2013 от 24.05.2013 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ПС 220 кВ «Т-10»

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия
- $2\ \Gamma OCT\ P\ 8.596\text{--}2002\ \Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «Ростовналадка»

Адрес: 344103, г. Ростов-на-Дону, пер. Араратский, 21.

Телефон (863) 295-99-55 Факс (863) 300-90-33

Испытательный центр

ГЦИ СИ Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Пензенской области» (ФБУ «Пензенский ЦСМ»)

Адрес: 440028, г. Пенза, ул. Комсомольская, д. 20; www.penzacsm.ru

Телефон/факс: (8412) 49-82-65, e-mail: pcsm@sura.ru

Аттестат аккредитации: ГЦИ СИ ФБУ «Пензенский ЦСМ» зарегистрирован в Государственном реестре средств измерений под № 30033-10.

Заместитель руководителя Федерального агентства по техническому		
регулированию и метрологии		Ф. В. Булыгин
М.п.	« »	2013 г.