ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Аппаратурно-методические комплексы каротажа мгновенных нейтронов деления (АМК КНД-М)

Назначение средства измерений

Аппаратурно-методические комплексы каротажа методом мгновенных нейтронов деления 235 U (далее в тексте АМК КНД-М) предназначены для измерения плотности потока надтепловых нейтронов со спектром " 1 /E" в диапазоне от 0.03 до 25 с $^{-1}$ см $^{-2}$ (в рабочем диапазоне поток нейтронов 1 / 2 4 4 4 6 7 1 2 3 4 6 1 5 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 1 6 6 1 $^$

Описание средства измерений

Принцип действия основан на регистрации мгновенных нейтронов деления ²³⁵U, вызванного нейтронами импульсного генератора, гелиевыми счётчиками медленных нейтронов СНМ-18.

Градуировка блока детектирования надтепловых нейтронов проводится в поле "1/Е" нейтронов Государственного первичного эталона единиц потока и плотности потока нейтронов.

Для контроля сохранности градуировочных характеристик используется блок градуировки (БГ), представляющий собой цилиндр из оргстекла диаметром 255 мм и высотой 235 мм, в теле которого установлены 4 счетчика СБМ-20. Конструкция блока градуировки обеспечивает возможность использования в качестве источников излучения скважинного нейтронного генератора, источника гамма-излучения на основе радионуклида 226 Ra и радионуклидного источника нейтронов Pu-Be(a,n).

АМК КНД-М выпускаются в двух модификациях – АИНК-49 и АИНК-60, отличающих ся габаритными размерами скважинного прибора и типом используемого генератора нейтронов. Кроме того, АИНК-49 имеет каналы для регистрации тепловых нейтронов (ТН) и для регистрации гамма-излучения (ГК), а АИНК-60 – канал ГК. Оба эти канала (ТН и ГК) являются индикаторными. Применяется АМК КНД-М при разведке и эксплуатации месторождений урана для получения измерительной информации о параметрах рудных интервалов в скважинах глубиной до 1000 м и диаметром более 60 мм для АИНК-49 и более 70 мм для АИНК-60.

В качестве генератора нейтронов в модификации АИНК-60 используется импульсный генератор нейтронов ИНГ-101ТБТ с начальным выходом не менее $2\cdot 10^8~{\rm c}^{-1}$ и минимальный ресурсом блока нейтроной трубки 25 часов, в модификации АИНК-49 используется импульсный генератор нейтронов ИНГ-112ТБТ с начальным выходом не менее $2\cdot 10^8~{\rm c}^{-1}$ и минимальным ресурсом блока нейтронной трубки 100 часов.

Передача сигналов со скважинного прибора (СП) осуществляется по каротажному кабелю на пульт управления (ПУ). Отслеживание сигналов с блока измерения глубины (БИГ), формирование и сбор информации со всех каналов и передачу ее на ПК осуществляет микропроцессор наземного блока ПУ. Связь ПУ со СП осуществляется по стандартному интерфейсу RS-812-926. Программное обеспечение обеспечивает запись (в текстовой файл) получаемой в процессе каротажа измерительной информации и представленной своими значениями, следуя сигналам от БИГ, с заданным шагом квантования по глубине.

Конструктивно СП реализован в стандартном стальном корпусе с внешним диаметром 60 мм в модификации АИНК-60 и 49 мм в модификации АИНК-49 и длиной не более 3000 мм, внутри которого размещены генератор нейтронов, детекторы нейтронов и гамма-квантов.

Наземный блок аппаратуры АМК КНД-М (ПУ) выполнен в герметичном корпусе, предохраняющем попадание в него пыли и влаги.

Базовый комплект аппаратуры АМК КНД-М обеспечивает за один спуско-подъем скважинного прибора (СП) проведение каротажа методом мгновенных нейтронов деления и гаммакаротажа.

Рис. 1. Фотография общего аппаратуры АМК КНД-М

Программное обеспечение

Mecmo

типа

утверждения

Аппаратура АМК КНД-М содержит как микроконтроллерное программное обеспечение, установленное непосредственно в блоках детектирования, так и прикладное программное обеспечение, установленное на управляющем ПК.

Микроконтроллерное программное обеспечение полностью закрыто и защищено от стороннего вмешательства. Оно обеспечивает собственный самоконтроль, а также самоконтроль аппаратных узлов, стабилизацию спектрометрического тракта, измерение энергетического распределения гамма-излучения и передачу его в управляющий ПК.

Прикладное программное обеспечение обеспечивает: функции передачи данных и команд через протоколы связи; контроль аппаратного обеспечения; управление режимами функционирования аппаратуры АМК КНД-М; сохранение результатов в архиве и возможность последующей работы с ними; исключение возможности несанкционированного доступа к настроечным параметрам и результатам работы аппаратуры АМК КНД-М.

К метрологически значимому относится все ПО.

Идентификационные данные ПО АМК КНД-М представлены в таблице 1.

Таблица 1.	Идентификационны	е ланные программ	ного обеспечения
100011111111111111111111111111111111111	114011114011111111111111111111111111111	• Amilia in par punin	11010 0000110 10111111

	Идентификаци-	Номер версии	Цифровой иденти-	Алгоритм вычис-
Наименование	онное наимено-	(идентификаци-	фикатор программ-	ления цифрового
программного	вание программ-	онный номер)	ного обеспечения	идентификатора
обеспечения	ного обеспече-	программного	(контрольная сумма	программного
	ния	обеспечения	исполняемого кода)	обеспечения
Программный мо-				
дуль для каротажа	a EVE	1.0 и выше	C784044F2AE74909E	MD5
и градуирования	q.EXE	т.о и выше	F4B400D0381A6A7	MIDS
АИНК-49				

Примечание: Контрольная сумма относится к текущей версии (1.0) ПО.

Уровень защиты программного обеспечения аппаратуры АМК КНД-М от непреднамеренных и преднамеренных изменений соответствует классу С в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Аппаратура АМК КНД-М имеет следующие технические характеристики.

- 1. Блок детектора надтепловых нейтронов (БДНН):
- диапазон измерений плотности потока нейтронов от 0.03 до $25 \, \mathrm{c^{-1} cm^{-2}}$
- разрешающее время не более $5 \cdot 10^{-6}$ с;
- нестабильность показаний не более $\pm 3\%$;
- пределы допускаемой основной погрешности ± 7%;
- 2. Блок градуировки (БГ):
- нелинейность счетной характеристики не более ± 10%;
- предел допускаемой относительной погрешности чувствительности к ИИИ из 226 Ra, нормированная на 0,1 мг радия в источнике, $\pm 5\%$;
 - нестабильность показаний в течение 5 ч не более ± 3%.
 - 3. Блок монитора потока нейтронов генератора (БМ):
- нелинейность счетной характеристики каждого из двух измерительных каналов БМ не более \pm 10%;
- нестабильность показаний каждого из двух измерительных каналов при загрузке $2 \cdot 10^3$ с⁻¹ не более $\pm 3\%$;
 - разрешающая способность БМ от 0,4 до 0,5;
- $\overline{\text{CKO}}$ коэффициента мониторирования (в расчёте на поток нейтронов генератора 10^8 c^{-1}) не более 3%.
 - 4. Время установления рабочего режима аппаратуры не более 10 минут.
- 5. Электропитание аппаратуры осуществляется от электросети переменного тока напряжением 220 В $^{+10\%}_{-15\%}$, частотой (50±1) Γ ц.
 - 6. Потребляемая мощность источника питания не более 100 В•А.
- 7. Скважинный прибор в рабочих условиях применения соответствует подгруппе КС4-1 по ГОСТ 26116-84 при климатических воздействиях:
 - выдерживает внешнее гидростатическое давление до 10 МПа (100 атм.),
 - устойчив к воздействию температуры в пределах от плюс 5 до плюс 40 °C;
- 8. Наземный блок аппаратуры АМК-КНД-М устойчив к воздействию температуры окружающей среды при изменении температуры от 5 до 40 $^{\circ}$ C и относительной влажности окружающего воздуха до 90 % при температуре 30 $^{\circ}$ C;

- 9. Пределы допускаемой дополнительной относительной погрешности аппаратуры АМК-КНД-М при изменении температуры окружающего воздуха в рабочих условиях эксплуатации \pm 0,1% на 1°C;
 - 10. Габаритные размеры и масса:
 - Π У не более $145 \times 145 \times 240$ мм, масса не более 3 кг;
- СП диаметр не более 60 мм в модификации АИНК-60 и 49 мм в модификации АИНК-49, длина не более 3000 мм, масса не более 25 кг:
 - БГ диаметр не более 255 мм, высота не более 235 мм, масса не более 15.кг.
 - 11. Требования к надежности:
- наработка на отказ (с учетом замены отработавших ресурс нейтронных генераторов) не менее 600 ч,
 - средний срок службы аппаратуры –пять лет,
 - средний срок службы блока нейтронной трубки 50 ч.

Знак утверждения типа

Знак утверждения типа наносится на титульном листе руководства по эксплуатации ТАИНК183 РЭ с помощью компьютерной графики и на наземном блоке методом шелкографии.

Комплектность средства измерений

В комплект поставки аппаратуры АМК КНД-М входят изделия и эксплуатационная документация, приведенные в таблице.

Наименование	Кол-во	Примечание
ПУ	1	
Контрольная плата	1	
СП	1	
БТ - блок нейтронной трубки ИНГ-101ТБТ		Поставка по карте заказа в модификации АИНК-60
БТ - блок нейтронной трубки ИНГ-112ТБТ		Поставка по карте заказа в модификации АИНК-49
БГ - блок градуировки	1	
Кабель сетевой RS 458-156	1	
Кабель нуль-модемный COM-COM DB9F-DB9F	1	
Персональный компьютер ПК		Поставка по карте заказа
Диск с рабочей программой	1	
Комплект запасных частей:	1	
вставка плавкая ВП2Б-1В-0,5А-250В	3	
набор колец уплотнительных:	6	
0-Ring Vi500 20 x 3 EHL-0,1/000210 EHLE		
AS568-225 V25-95 MOSS SEAL		
Паспорт	1	
Руководство по эксплуатации	1	
Методика поверки	1	

Поверка

осуществляется по документу ТАИНК183 МП «Аппаратурно-методический комплекс каротажа мгновенных нейтронов деления (АМК КНД-М). Методика поверки», утверждённому ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», в мае 2013 года.

поверке применяются источники из ^{226}Ra типа PA-1 (или EP-14) по При ГОСТР 8.806-2012 в диапазоне масс радия 0.1 - 1.0 мг и Pu-Be(a,n) источники нейтронов по ГОСТР 8.031-82 в диапазоне значений потока нейтронов $2.10^5 - 5.10^7$ с⁻¹, аттестованные с погрешностью не более ± 4%.

Сведения о методиках (методах) измерений

ТАИНК183 РЭ «Аппаратурно-методический комплекс каротажа мгновенных нейтронов деления АМК КНД-М. Руководство по эксплуатации»

Нормативные и технические документы, устанавливающие требования к аппаратурнометодическому комплексам каротажа мгновенных нейтронов деления (АМК КНД-М)

- 1. ГОСТ 27451-87 «Средства измерений ионизирующих излучений. Общие технические **условия**.
- 2. ГОСТ 21116-84 «Аппаратура геофизическая скважинная. Общие технические условия».
- 3. ГОСТ Р 8.806-2012 «Государственная поверочная схема для средств измерений массы и активности радия».
- 4. ГОСТ 8.031-82 «Государственный первичный эталон и государственная поверочная схема для средств измерений потока и плотности потока нейтронов».
- 5. ТАИНК183 ТУ «Аппаратурно-методический комплекс каротажа мгновенных нейтронов деления АМК КНД-М. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

При осуществлении деятельности в области использования атомной энергии.

Изготовитель

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова» (ФГУП «ВНИИА») Адрес: 127055, г. Москва, ул. Сущевская, д. 22

Тел.: (499)9787803; факс: (499) 9780903, 9780578

Заявитель

Федеральное государственное унитарное научно-производственное предприятие «Геологоразведка» (ФГУНПП «Геологоразведка»), г. Санкт-Петербург

Адрес: 192019, г. Санкт-Петербург, ул. Книпович, д. 1, корп.2

Тел.: (812) 412-76-30, факс: (812) 412-98-83

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»,

Адрес: Россия, 190005, г. Санкт- Петербург, Московский пр., д. 19.

Тел.: (812) 251-76-01; факс:(812) 713-01-14

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя			
Федерального агентства			
по техническому регулированию			
и метрологии			Ф.В. Булыгин
	М.п.		
		«»	2014 г.