ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы неавтоматического действия СҮ

Назначение средства измерений

Весы неавтоматического действия СҮ (далее – весы), предназначены для измерений массы.

Описание средства измерений

Конструктивно весы выполнены в едином корпусе и состоят из грузоприемного устройства, грузопередающего устройства и весоизмерительного устройства с показывающим устройством. Весы с действительной ценой деления 0,0001 г и 0,001 г оснащены ветрозащитной витриной.

Общий вид весов представлен на рисунке 1.

Рисунок 1 – Общий вид весов

Принцип действия весов основан на компенсации массы взвешиваемого груза электромагнитной силой, создаваемой системой автоматического уравновешивания. Электрический сигнал, изменяющийся пропорционально массе взвешиваемого груза, преобразуется в цифровой код, обрабатывается, и измеренное значение массы выводится на дисплей.

Весы снабжены следующими устройствами и функциями (в скобках указаны соответствующие пункты ГОСТ OIML R 76-1–2011):

- определение стабильного равновесия (4.4.2);
- устройство индикации отклонения от нуля (4.5.5);
- полуавтоматическое устройство установки на нуль (Т.2.7.2.2);
- устройство первоначальной установки на нуль (Т.2.7.2.4);
- устройство слежения за нулем (Т.2.7.3);
- устройство уравновешивания тары устройство выборки массы тары (Т.2.7.4.1);
- автоматическое устройство юстировки чувствительности встроенным грузом (4.1.2.5) только для модификаций СҮ-224С, СҮ-124С, СҮ-64С, СҮ-223С, СҮ-323С, СҮ-513С, СҮ-1003С, СҮ-1202С, СҮ-2202С, СҮ-3102С, СҮ-4102С, СҮ-6102С;
 - обнаружение промахов (5.2);
- процедура просмотра всех соответствующих символов индикации в активном и неактивном состояниях (5.3.1);
 - запоминающее устройство (4.4.6);
 - взвешивание в различных единицах измерения массы (2.1);
 - вспомогательное показывающее устройство (Т.2.5);

– различные режимы работы (4.20): счетный режим; вычисление процентных соотношений (удельный вес); режим сравнения; суммирование; статистическая обработка.

Весы выпускаются в следующих модификациях: CY-224C, CY-124C, CY-64C, CY-224, CY-124, CY-64, CY-123, CY-223, CY-323, CY-423, CY-513, CY-723, CY-1003, CY-223C, CY-323C, CY-513C, CY-1003C, CY-1202, CY-2202, CY-3102, CY-4102, CY-6102, CY-1202C, CY-2202C, CY-3102C, CY-4102C, CY-6102C, CY-15K, CY-20K, CY-25K, CY-31K, CY-60K, отличающихся метрологическими характеристиками.

С – индекс присутствует в обозначении модификаций весов с автоматическим устройством юстировки чувствительности встроенным грузом.

K – индекс присутствует в обозначении модификаций весов с максимальной нагрузкой (Max), превышающей 10 кг.

Значения максимальной нагрузки (Max), минимальной нагрузки (Min), поверочного интервала (*e*) наносятся на маркировочную табличку, закрепляемую на корпусе весов.

Весы оснащаются цифровым интерфейсом RS-232C для связи с периферийными устройствами (например, принтеры, вторичный дисплей, ПК).

Знак поверки в виде наклейки наносится на корпус весов с лицевой стороны.

Для защиты от несанкционированного доступа к внутренним частям и изменений параметров их настройки и юстировки, корпус весов и переключатель настройки и юстировки пломбируются, пломбой в виде разрушаемой наклейки (рисунок 2).

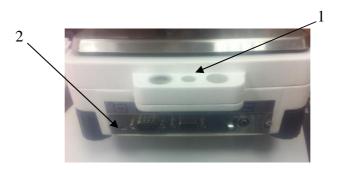


Рисунок 2 – Схема пломбировки корпуса весов (1) и переключателя юстировки (2)

Программное обеспечение

Программное обеспечение (далее $-\Pi O$) весов является встроенным, используется в стационарной (закрепленной) аппаратной части с определенными программными средствами.

ПО не может быть модифицировано или загружено через какой-либо интерфейс или с помощью других средств после принятия защитных мер.

Защита от несанкционированного доступа к настройкам и данным измерений обеспечивается невозможностью изменения ПО без применения специализированного оборудования производителя.

Кроме того, для защиты от несанкционированного доступа к параметрам юстировки и настройки, а также измерительной информации используется переключатель настройки и юстировки, пломбируемый с помощью разрушаемой наклейки.

Защита от преднамеренных и непреднамеренных воздействий соответствует уровню «С» по МИ 3286-2010.

Идентификационным признаком ПО служит номер версии, который отображается на дисплее при включении весов. Идентификационные данные ПО приведены в таблице 1.

Таблица 1

	Идентифика-	Номер версии	Цифровой идентифика-	Алгоритм вычисления		
Наименование	ционное наиме-	(идентифика-	тор ПО (контрольная	цифрового идентифи-		
ПО	нование ПО	ционный но-	сумма исполняемого	катора ПО		
		мер) ПО	кода)	-		
не применяется не применяется $r.1.1.6.x^{1}$ не применяется не применяется						
Примечание:						
1) x – обозначения не относящиеся к метрологически значимой части ПО.						

Метрологические и технические характеристики

Класс точности, максимальная нагрузка (Max), поверочный интервал (e), число поверочных интервалов (n) и действительная цена деления (d) приведены в таблицах 2-5.

Таблица 2

таолица 2						
	Модификации					
Характеристика	CY-64	CY-124	CY-224	CY-123	CY-223	
	CY-64C	CY-124C	CY-224C	C1-125	CY-223C	
Класс точности по ГОСТ OIML R 76-1–2011	I			П		
Максимальная нагрузка (Max), г	60	120	220	120	220	
Поверочный интервал (е), г	0,001	0,001	0,001	0,01	0,01	
Действительная цена деления шкалы (d) , г	0,0001	0,0001	0,0001	0,001	0,001	
Число поверочных интервалов (n)	64000	120000	220000	12000	22000	

Таблица 3

таолица 5						
	Модификации					
Характеристика	CY-323		CY-513	CV 702	CY-1003	
	CY-323C	CY-423	CY-513C	CY-723	CY-1003C	
Класс точности по ГОСТ OIML R 76-1-2011	П		I			
Максимальная нагрузка (Max), г	320	420	510	720	1000	
Поверочный интервал (е), г	0,01	0,01	0,01	0,01	0,01	
Действительная цена деления шкалы (d) , г	0,001	0,001	0,001	0,001	0,001	
Число поверочных интервалов (n)	32000	42000	51000	72000	100000	

Таблица 4

	Модификации					
Характеристика	CY-1202	CY-2202	CY-3102	CY-4102	CY-6102	
	CY-1202C	CY-2202C	CY-3102C	CY-4102C	CY-6102C	
Класс точности по ГОСТ OIML R 76-1-2011	II					
Максимальная нагрузка (Max), г	1200	2200	3100	4100	6100	
Поверочный интервал (e) , г	0,1	0,1	0,1	0,1	0,1	
Действительная цена деления шкалы (d) , г	0,01	0,01	0,01	0,01	0,01	
Число поверочных интервалов (n)	12000	22000	31000	41000	61000	

Таблица 5

Таолица 3		,				
	Модификации					
Характеристика	CY-15K	CY-20K	CY-25K	CY-31K	CY-60K	
Класс точности по ГОСТ OIML R 76-1-2011	II					
Максимальная нагрузка (Max), г	15000	20000	25000	31000	60000	
Поверочный интервал (e) , г	1	1	1	1	10	
Действительная цена деления шкалы (d) , г	0,1	0,1	0,1	0,1	1	
Число поверочных интервалов (n)	15000	20000	25000	31000	6000	

Диапазон уравновешивания тары	100 % Max
Диапазон температуры (п. 3.9.2.2 ГОСТ OIML R 76-1–2011), °C:	
- для весов класса точности I	от +15 до +25
- для весов класса точности II	от +15 до +30
Параметры электропитания от сети переменного тока:	
напряжение, В	
частота, Гц	50±1

Знак утверждения типа

наносится на маркировочную табличку, расположенную на корпусе весов и типографским способом на титульный лист эксплуатационной документации.

Комплектность средства измерений

Таблица 6 – Комплектность средства измерений

Наименование	Обозначение	Количество
Весы	-	1 шт.
Адаптер сетевого питания	-	1 шт.
Руководство по эксплуатации	-	1 экз.

Поверка

осуществляется по приложению ДА «Методика поверки весов» ГОСТ OIML R 76-1-2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания». Идентификационные данные, а так же процедура идентификации программного обеспечения приведены в разделе 3 руководства по эксплуатации на весы.

Основные средства поверки: гири, соответствующие классам точности E_2 , F_1 , F_2 по ГОСТ OIML R 111-1–2009.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к весам неавтоматического действия СУ

ГОСТ OIML R 76-1-2011 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ 8.021-2015 ГСИ. Государственная поверочная схема для средств измерений массы Техническая документация фирмы-изготовителя

Изготовитель

Фирма «Aczet Private Limited.», Индия

Адрес: 3, Pushpanjali Building, Gaushala Lane, Malad (East), Mumbai 400097, India

Тел.: +91-22-4243-7700 Факс +91-22-4243-7785

E-mail: vivek.g@aczet.com, www.aczet.com

Заявитель

Общество с ограниченной ответственностью «ВМ-Сервис» (ООО «ВМ-Сервис»)

107553, Москва, ул. Амурская, д. 1, стр. 30, оф. 212

Тел./факс: +7 (499) 922-05-79

E-mail: info@ wms-service.ru, www.wms-service.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Тел./факс: +7 (495) 437-5577, +7 (495) 437-5666

E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации $\Phi\Gamma$ УП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев