ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи измерительные термисторные 478A, 8478В

Назначение средства измерений

Преобразователи измерительные термисторные 478A, 8478B (далее – преобразователи измерительные) предназначены для измерений средней мощности ВЧ и СВЧ колебаний в коаксиальных трактах совместно с блоками измерительными ваттметра термисторного.

Описание средства измерений

преобразователя Принцип действия измерительного основан изменении рабочего термистора, установленного в преобразователе в качестве сопротивления поглощающей СВЧ мощность нагрузки, при воздействии мощности электромагнитных корпусе преобразователя также vстановлен опорный колебаний. В предназначенный для компенсации влияния температуры преобразователя на результаты измерений и экранированный от СВЧ сигнала. При работе совместно с блоком измерительным термисторы подключаются в плечи самобалансирующихся резистивных мостов, напряжение с которых подвергается дальнейшему аналого-цифровому преобразованию, цифровой обработке и измерению в блоке измерительном ваттметра термисторного.

Конструктивно преобразователи измерительные представляют собой моноблоки цилиндрической формы без органов управления и дисплея. На передней стенке корпуса измерительного преобразователя расположен коаксиальный соединитель, на задней – электрический соединитель для подключения кабеля к блоку измерительному. Внутри корпуса установлена металлическая конструкция с установленными на ней рабочим и компенсационным термисторами, печатная плата со вспомогательными элементами и элементы крепления составных частей преобразователя. Преобразователи измерительные 478A выпускаются с опциями: 478A-H13, 478A-H55, 478A-H63, 478A-H72, 478A-H73, 478A-H75, 478A-H76, 478A-H83, 478A-H93, преобразователи измерительные 8478B – с опциями: 8478B-H01, 8478B-H27, 8478B-11. Опции преобразователей отличаются диапазоном рабочих частот и допустимыми значениями КСВН по диапазону частот. Опция 8478B-11 отличается типом коаксиального соединителя (АРС-7).

Внешний вид преобразователей измерительных, место нанесения обозначения типа, место пломбировки от несанкционированного доступа и место нанесения знака приведены на рисунках 1 и 2.

Рисунок 1 – Вид преобразователей измерительных 478А

Рисунок 2 – Вид преобразователей измерительных 8478В

- * место пломбировки;
- ** место нанесения знака об утверждении типа;
- *** место нанесения маркировки.

Преобразователи измерительные термисторные 478A и 8478B совместимы с блоками измерительными N432A.

Метрологические и технические характеристики

Метрологические и технические характеристики преобразователей измерительных приведены в таблицах 1-2.

Таблина 1

Таблица 1					
Наименование	Значение характеристики				
характеристики	эначение характеристики				
Тип преобразователя	478A	8478B			
измерительного	478A	0470D			
Тип коаксиального					
соединителя по ГОСТ 13317-	N-тип				
89					
Диапазон рабочих частот,					
ГГц	от 0,01 до 10	от 0,01 до 18			
опция Н13	от 0,0001 до 1	-			
опция Н55	от 0,001 до 1	-			
опция Н63	от 0,0001 до 1	-			
опция Н72	от 0,001 до 1	-			
опция Н73	от 0,001 до 0,1	-			
опция Н75	от 0,001 до 1	-			
опция Н76	от 0,001 до 1	-			
опция Н83	от 0,001 до 1	-			
опция Н93	от 0,001 до 1	-			
опция Н01	-	от 0,01 до 18			
опция Н27	-	от 0,01 до 18			
Диапазон измеряемых					
значений мощности, дБ исх.	от минус 30 до 10				
1 мВт					

Наименование характеристики	Значение характеристики			
Пределы допускаемой				
относительной погрешности				
коэффициента калибровки,				
%, на частоте				
10 МГц	± 2,0	-		
100 МГц	± 2,0	-		
1 ГГц	± 3,0	-		
2 ГГц	± 2,0	$\pm 2,60$		
3 ГГц	± 2,2	$\pm 2,60$		
4 ГГц	± 2,2	$\pm 2,70$		
5 ГГц	± 2,2	$\pm 2,70$		
6 ГГц	± 2,2	$\pm 2,70$		
7 ГГц	± 2,6	$\pm 2,70$		
8 ГГц	± 2,5	± 3,10		
9 ГГц	± 2,6	± 3,3%		
10 ГГц	± 3,0	± 3,40		
11 ГГц		± 3,60		
12 ГГц	-	$\pm 3,70$		
13 ГГц	-	$\pm 3,70$		
14 ГГц	-	± 4,00		
15 ГГц	_	± 4,00		
16 ГГц	_	± 4,40%		
17 ГГц	_	± 5,20		
18 ГГц	- ± 5,10			
Рабочее сопротивление				
термистора, Ом	200			
Масса, кг	0,14			

Таблица 2

КСВН входа преобразователя измерительного				
Тип и наименование опции	Диапазон частот	КСВН, не более		
478A	от 10 до 25 МГц	1,75		
	от 25 МГц до 7ГГц	1,3		
	от 7 до 10 ГГц	1,5		
478A-H13	300 кГц	1,8		
	1 ГГц	1,3		
478A-H55	от 1 МГц до 1 ГГц	1,3		
478A-H63	300 кГц	1,8		
	1 ГГц	1,3		
478A-H72	от 1 МГц до 1 ГГц	1,2		
478A-H73	от 1 до 100 МГц	1,1		
	50 МГц	1,05		
478A-H75	от 1 МГц до 1 ГГц	1,3		
	50 МГц	1,05		
478A-H76	от 1 МГц до 1 ГГц	1,3		
	50 МГц	1,05		
478A-H83	от 1 МГц до 1 ГГц	1,3		
	50 МГц	1,05		

Продолжение таблицы 2

478A-H93	от 1 МГц до 1 ГГц	1,3
	50 МГц	1,05
8478B	от 10 до 30 МГц	1,75
	от 30 до 100 МГц	1,35
	от 100 МГц до 1 ГГц	1,1
	от 1 до 12,4 ГГц	1,35
	от 12,4 до 18 ГГц	1,6
8478B-H01	50 МГц	1,05

Условия эксплуатации преобразователей измерительных приведены в таблице 3. Таблица 3

Условия эксплуатации	Температура: от 0 до 55 °C; Относительная влажность воздуха не более 95 % при
1	40 °C;

Знак утверждения типа

Знак утверждения типа наносится в верхнем левом углу Руководства по эксплуатации преобразователей измерительных типографским или компьютерным способом и на корпус преобразователя измерительного в виде наклейки.

Комплектность средства измерений

Комплект поставки включает:

- преобразователь измерительный термисторный 478А или 8478В 1 шт.;
- руководство по эксплуатации 1 шт.;
- методика поверки 1 шт.

Поверка

осуществляется в соответствии с документом МП 57974-14 «Инструкция. Преобразователи измерительные термисторные 478А, 8478В. Методика поверки», утвержденным Φ ГУП «ВНИИ Φ ТРИ» 20 декабря 2013 г.

Основные средства поверки:

- генератор сигналов E8257D с опцией 520 (рег. № 36797-08): диапазон частот от 250 кГц до 20 ГГц, пределы допускаемой относительной погрешности частоты опорного генератора (за 1 год): \pm 3 \cdot 10⁻⁸, шаг установки частоты 0,001 Гц, пределы установки мощности выходного сигнала от минус 135 до 12 дБ исх. 1 мВт, пределы абсолютной погрешности установки мощности выходного сигнала \pm 1 дБ при мощностях выходного сигнала более минус 70 дБ исх. 1 мВт;
- генератор сигналов произвольной формы 33250A (рег. № 26209-08): диапазон рабочих частот от 1 мкГц до 80 МГц, диапазон установки размаха напряжения выходного сигнала на нагрузке 50 Ом от 10 мВ до 10 В, пределы допускаемой абсолютной погрешности установки размаха напряжения \pm (0,01 · U_P + 1 мВ), пределы допускаемой относительной погрешности установки частоты выходного сигнала \pm 1 · 10^{-6} ;
- анализатор электрических цепей векторный E5071C с опциями 280 или 480, 2К5 или 4К5 (рег. № 45992-10): диапазон рабочих частот от 9 кГц до 20 ГГц, пределы допускаемой абсолютной погрешности измерений модуля коэффициента отражения в диапазоне частот от 9 кГц до 10 МГц \pm (0,004 + 0,015 \cdot Г), в диапазоне частот от 10 МГц до 2 ГГц \pm (0,006 + 0,016 \cdot Г), в диапазоне частот от 2 до 6 ГГц \pm (0,032|Г| + 0,013), в диапазоне частот от 6 до 20 ГГц \pm (0,613|Г| + 0,017), где Г измеренное значение модуля коэффициента отражения;

- набор мер коэффициентов передачи и отражения 85054В (рег. № 53566-13): пределы допускаемой абсолютной погрешности измерений глубины погружения контакта соединителей вилка и розетка \pm 0,00127 мм, пределы допускаемых значений погрешности воспроизведения глубины погружения контакта \pm 0,0762 мм, пределы допускаемой погрешности определения действительных значений модуля коэффициента отражения от \pm 0,8 до \pm 1,4 %, пределы допускаемой погрешности определения фазы коэффициента отражения от 0,5° до 1,5°, пределы допускаемой погрешности определения коэффициента передачи от \pm 0,03 до \pm 0,1 дБ, пределы допускаемой погрешности определения фазы коэффициента передачи от \pm 0,3° до \pm 2°, пределы допускаемой абсолютной погрешности измерений глубины погружения контакта соединителей вилка и розетка \pm 0,00127 мм;
- вольтметр переменного тока B3-63 (рег. № 10908-87): диапазон частот от 10 Гц до 1,5 ГГц, диапазон измерений среднеквадратического значения напряжения от 10 мВ до 100 В, пределы допускаемой абсолютной погрешности измерений $\pm (0.05 2)$ %;
- мультиметр цифровой 34410A (рег. № 43805-11), диапазон измерений постоянного напряжения до 1 кВ, пределы допускаемой абсолютной погрешности измерений напряжения постоянного тока \pm (0,00005 · Uи + 0,000035 · Uп) в диапазоне измеряемых значений напряжения до 100 мВ, \pm (0,000035 · Uи + 0,000007 · Uп) в диапазоне измеряемых значений напряжения до 1 В, \pm (0,00003 · Uи + 0,000005 · Uп) в диапазоне измеряемых значений напряжения до 10 В, \pm (0,00004 · Uи + 0,000006 · Uп) в диапазоне измеряемых значений напряжения до 1000 В, где Uи измеренное значение, Uп предел измерений, диапазон измерений сопротивления постоянному току до 1000 МОм, пределы допускаемой абсолютной погрешности измерений сопротивления постоянному току \pm (0,0001 · Rи + 0,00004 · Rп) в диапазоне значений до 100 Ом, \pm (0,00012 · Rи + 0,00001 · Rп) в диапазоне значений до 1 МОм, где Rи результат измерений, Rп предел измерений;
- источник питания постоянного тока 6614С (рег. № 39237-08), диапазон устанавливаемых напряжений постоянного тока на выходе до 100 В, пределы допускаемой погрешности установки выходного напряжения \pm (0,0005 · Uycт + 50 мВ), где Uycт устанавливаемое значение напряжения;
 - блок измерительный ваттметра термисторного N432A;
- ваттметр поглощаемой мощности М3-54 (рег. № 7058-79), с преобразователями измерительными аттестованными в качестве рабочего эталона с погрешностью аттестации по коэффициенту калибровки не более 0,7 1,5 %.

Сведения о методиках (методах) измерений

Agilent Technologies. Термисторная головка 478A. Руководство по эксплуатации и техническому обслуживанию.

Agilent Technologies. Термисторная головка 8478В. Руководство по эксплуатации и техническому обслуживанию.

Нормативные и технические документы, устанавливающие требования к преобразователям измерительным термисторным 478A, 8478В

- 1. ГОСТ 13317 89. Элементы соединения СВЧ трактов электронных измерительных приборов. Присоединительные размеры.
 - 2. Техническая документация фирмы изготовителя.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям, в том числе для проведения настройки, технического обслуживания, ремонта и контроля ВЧ и СВЧ устройств, коаксиальных линий передачи

сигналов и т.д., сетей беспроводной передачи информации, линий спутниковой связи, а также в других сферах, связанных с приемом и передачей радиосигналов.

Изготовитель

Фирма «Agilent Technologies», Малайзия, Bayan Lepas Free Industrial Zone, 11900, Bayan Lepas, Penang, Malaysia.

Заявитель

ООО «Аджилент Текнолоджиз», Российское представительство,

г. Москва, Космодамианская наб. 52, стр. 1, 113054.

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»).

Юридический адрес: 141570, Московская обл., Солнечногорский р-н, городское поселение Менделеево, Главный лабораторный корпус.

Почтовый адрес: 141570, Московская обл., Солнечногорский р-н, п/о Менделеево

Телефон: (495) 744-81-12, факс: (495) 744-81-12

E-mail: office@vniiftri.ru

Аттестат аккредитации Φ ГУП «ВНИИ Φ ТРИ» по проведению испытаний средств измерений в целях утверждения типа № 30002-13 от 07.10.2013 г.

Заместитель Руководителя				
Федерального агентства по техническому				
регулированию и метрологии				Ф.В. Булыгин
		«	»	2014 1
Ŋ	√.п.			