ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части АО «Транснефть-Урал» по объекту ЛПДС «Языково»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части АО «Транснефть-Урал» по объекту ЛПДС «Языково» (далее - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, потребленной отдельными технологическими объектами, сбора, хранения и обработки полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- автоматическое выполнение измерений 30-минутных приращений активной и реактивной электроэнергии, мощности на 30-минутных интервалах;
- периодический (1 раз в 30 минут, час, сутки) и /или по запросу автоматический сбор привязанных к единому календарному времени измеренных данных о приращениях электроэнергии с дискретностью учета (30 мин) и данных о состоянии средств измерений;
- автоматическое сохранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу доступа к результатам измерений, данным о состоянии объектов и средств измерений со стороны сервера организаций—участников оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);
- диагностику и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройку параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень измерительно-информационные комплексы (ИИК), включающие измерительные трансформаторы тока (ТТ) класса точности 0,5 по ГОСТ 7746-2001, трансформаторы напряжения (ТН) класса точности 0,5 по ГОСТ 1983-2001, счетчики электроэнергии СЭТ-4ТМ.03М класса точности 0,2 по ГОСТ Р 52323-2005 для активной электроэнергии; класса точности 0,5 по ГОСТ Р 52425-2005 для реактивной электроэнергии, счетчики электроэнергии СЭТ-4ТМ.03 класса точности 0,2 по ГОСТ 30206-94 для активной электроэнергии; класса точности 0,5 по ГОСТ Р 26035-83 для реактивной электроэнергии, установленные на объектах, указанных в таблице 2.
- 2-й уровень информационно-вычислительный комплекс (ИВК) АИИС КУЭ, включающий в себя «Центр сбора и обработки данных» (далее ЦСОД) АИИС КУЭ ОАО «АК «Транснефть» (регистрационный номер № 38424-08) и автоматизированные рабочие места (АРМы) диспетчеров (операторов АИИС КУЭ), программное обеспечение (ПО) «Энергосфера».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают в счетчик электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Измерительная информация на выходе счетчика без учета коэффициента трансформации:

- активная и реактивная электрическая энергия, как интеграл по времени от средней за период 0,02 с активной и реактивной мощности, соответственно, вычисляемая для интервалов времени 30 мин;
 - средняя на интервале времени 30 мин активная (реактивная) электрическая мощность.

Цифровой сигнал с выходов счетчиков по линиям связи поступает на уровень ИВК, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление и передача накопленных данных в организации — участники оптового рынка электрической энергии и мощности через каналы связи.

Данные по группам точек поставки в организации-участники ОРЭ и РРЭ, в том числе ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам, передаются в виде хml-файлов формата 80020 в соответствии с Приложением 11.1.1 к Положению о порядке получения статуса субъекта оптового рынка и ведения реестра субъектов оптового рынка с использованием ЭЦП субъекта рынка. Передача результатов измерений, состояния средств и объектов измерений по группам точек поставки производится с сервера ИВК настоящей системы с учетом полученных данных по точкам измерений, входящим в АИИС КУЭ ОАО «АК «Транснефть» (номер в Госреестре №54083-13).

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя два (основной и резервный) устройства синхронизации системного времени (УССВ) типа ССВ-1Г, входящих в состав ЦСОД, и таймеры счетчиков. Сличение времени таймеров счетчиков осуществляется непосредственно с уровня ИВК 1 раз в сутки, корректировка времени счетчиков происходит при расхождении со временем ИВК более чем на 1 с, но не чаще 1 раза в сутки.

Журналы событий счетчика электроэнергии отражают: время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент, непосредственно предшествующий корректировке.

Программное обеспечение

В АИИС КУЭ, используется программный комплекс (ПК) «Энергосфера» в состав которого входит специализированное ПО указанное в таблице 1. ПК «Энергосфера» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений – высокий (в соответствии с Р 50.2.077-2014).

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Таблица 1 – Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Метрологически значимая часть ПО		
Идентификационное наименование ПО	ПК «Энергосфера»		
Номер версии (идентификационный номер) ПО	Не ниже 7.0		
Цифровой идентификатор ПО (по MD5)	CBEB6F6CA69318BED976E08A2BB7814B		
Другие идентификационные данные (если имеются)	pso_metr.dll, версия 1.1.1.1		

Метрологические и технические характеристики

Таблица 2 – Состав измерительных каналов АИИС КУЭ

	Наименование	Состав измерительных каналов				Вид	Метрологи- ческие характеристики ИК	
объектов и номера точек измерений		TT	ТН	Счетчик	Сервер	электро- энергии	Основная погрешность, %	Погрешность в рабочих усло- виях, %
1	2	3	4	5	6	7	8	9
1	ЛПДС «Языково» НПС-4 ЗРУ-10 кВ 1 с.ш. 10кВ яч. 15	ТЛО-10 150/5 Кл. т. 0,5S	ЗНОЛ. 06-10УЗ 10000/√3/100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	HP Proliant DL360 G8	Активная Реактивная	±1,0 ±2,6	±2,7 ±4,2
2	ЛПДС «Языково» НПС-4 ЗРУ-10 кВ 2 с.ш. 10кВ яч. 5	ТЛО-10 150/5 Кл. т. 0,5S	3НОЛ. 06-10У3 10000/√3/100/√3 Кл. т. 0,5	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5		Активная Реактивная	±1,0 ±2,6	±3,0 ±4,9
3	ЛПДС «Языково» НПС-4 ЗРУ-10 кВ 1 с.ш. 10кВ яч. 22	ТЛО-10 150/5 Кл. т. 0,5S	3НОЛ. 06-10У3 10000/√3/100/√3 Кл. т. 0,5	СЭТ-4ТМ.03 Кл. т. 0,2S/0,5		Активная Реактивная	±1,0 ±2,6	±3,0 ±4,9
4	ЛПДС «Языково» НПС-4 ЗРУ-10 кВ 1 с.ш. 10кВ яч. 26	ТЛО-10 50/5 Кл. т. 0,5S	3НОЛ. 06-10У3 10000/√3/100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5		Активная Реактивная	±1,0 ±2,6	±2,7 ±4,2

Продолжение таблицы 2

1	2	3	4	5	6	7	8	9
5	ЛПДС «Языково» НПС-4 ЗРУ-10 кВ 2 с.ш. 10кВ яч. 11	ТЛО-10 50/5 Кл. т. 0,5S	ЗНОЛ. 06-10УЗ 10000/√3/100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,	DF360 (Активная	±1,0	±2,7
6	ЛПДС «Языково» НПС-4 ЗРУ-10 кВ 2 с.ш. 10кВ яч. 12	ТЛО-10 150/5 Кл. т. 0,5S	ЗНОЛ. 06-10УЗ 10000/√3/100/√3 Кл. т. 0,5	СЭТ-4ТМ.03М Кл. т. 0,2S/0,5	rolia	Реактивная	±2,6	±4,2

Примечания:

- 1. Характеристики погрешности ИК даны для измерений электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:

параметры сети: напряжение: от 30,98 Uном до 1,02УИном; ток: от 1,0УНом до 1,2УНом, соѕj=0,9 инд.;

температура окружающей среды (20 ± 5) °C.

- 4. Рабочие условия:
- параметры сети: напряжение: от 0,9 Uном до 1,1 Uном; ток: от 0,02 Уном до 1,2 Уном;
- допускаемая температура окружающей среды для измерительных трансформаторов от минус 40 до плюс 70 °C, для счетчиков от минус 20 до плюс 55 °C; сервера от плюс 15 до плюс 35 °C;
- 5. Погрешность в рабочих условиях указана для I=0,02 Іном соsj = 0,8 инд. и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 5 °C до плюс 35 °C;
- 6. Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа как его неотъемлемая часть.
- 7. В составе измерительных каналов, перечисленных в таблице 2, применяются измерительные компоненты утвержденных типов.

Погрешность СОЕВ не превышает ± 5 с.

Надежность применяемых в системе компонентов:

- электросчётчик СЭТ-4TM.03M параметры надежности: среднее время наработки на отказ Т = 140000 ч, среднее время восстановления работоспособности tв – не более 168 ч;
- электросчётчик СЭТ-4TM.03 параметры надежности: среднее время наработки на отказ T = 90000 ч, среднее время восстановления работоспособности tв не более 2 ч;
- сервер среднее время наработки на отказ не менее 264599 ч, среднее время восстановления работоспособности 1 ч.

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться в организации—участники оптового рынка электроэнергии организацию с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:

параметрирования;

пропадания напряжения;

коррекции времени в счетчике;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:

электросчётчика;

испытательной коробки;

сервера;

- защита на программном уровне информации при хранении, передаче, параметрировании:

электросчетчика,

сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- один раз в сутки (функция автоматизирована).

Глубина хранения информации:

- электросчетчики СЭТ-4TM.03M тридцатиминутный профиль нагрузки в двух направлениях не менее 113 суток; при отключении питания не менее 3,5 лет;
- электросчетчики СЭТ-4TM.03 тридцатиминутный профиль нагрузки в двух направлениях не менее 113 суток; при отключении питания не менее 3,5 лет;
- Сервер БД хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части АО «Транснефть-Урал» по объекту ЛПДС «Языково».

Комплектность средства измерений

Комплектность АИИС КУЭ указана в таблице 3.

Таблица 3 - Комплектность АИИС КУЭ

Наименование	Регистрационный №	Количество, шт.
Трансформатор тока ТЛО-10	25433-11	12
Трансформатор напряжения ЗНОЛ.06-10УЗ	3344-04	6
Счетчики электроэнергии СЭТ-4ТМ.03	27524-04	2
Счетчики электроэнергии СЭТ-4ТМ.03М	36697-12	4
Сервер HP Proliant DL360 G8		1
Программное обеспечение ПК «Энергосфера»		1

В комплект поставки входит техническая и эксплуатационная документация на систему и на комплектующие средства измерений, методика поверки «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части АО «Транснефть-Урал» по объекту ЛПДС «Языково». Измерительные каналы. Методика поверки».

Поверка

осуществляется по документу МП 60250-15 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части АО «Транснефть-Урал» по объекту ЛПДС «Языково». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» 26 февраля 2015 года.

Средства поверки измерительных компонентов:

- трансформаторов тока по ГОСТ 8.217-2003;
- трансформаторов напряжения по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-2011;
- счетчиков СЭТ-4ТМ.03М по методике поверки «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03М. Методика поверки» ИЛГШ.411152.145 РЭ1;
- счетчиков СЭТ-4ТМ.03 по методике поверки «Счетчик электрической энергии многофункциональный СЭТ-4ТМ.03. Методика поверки» ИЛГШ.411152.124 РЭ1;

Сведения о методиках (методах) измерений

Метод измерений приведен в паспорте на систему автоматизированную информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части АО «Транснефть-Урал» по объекту ЛПДС «Языково».

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «АК «Транснефть» в части АО «Транснефть-Урал» по объекту ЛПДС «Языково»:

TOCT 1983-2001	«Трансформаторы напряжения. Оощие технические условия».
ГОСТ 22261-94	«Средства измерений электрических и магнитных величин. Общие
	технические условия».
ГОСТ 34.601-90	«Информационная технология. Комплекс стандартов на автоматизи-
	рованные системы. Автоматизированные системы. Стадии создания».
ГОСТ 7746-2001	«Трансформаторы тока. Общие технические условия».
ΓΟCT P 8.596-2002	«ГСИ. Метрологическое обеспечение измерительных систем. Основные
	положения».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

-при осуществлении торговли.

Изготовитель:

EOCT 1002 2001

ООО «СпецЭнергоСервис» 450081, РФ, Республика Башкортостан, г. Уфа, ул. Баязита Бикбая, д. 19/1, к. 371 Телефон/Факс (347) 262 74 67

Испытательный центр:

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации Φ ГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев

М.п.

2015 г.