ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы вагонные для статического взвешивания и взвешивания в движении железнодорожных вагонов и поездов «ВВТ-СД-150»

Назначение средства измерений

Весы вагонные для статического взвешивания и взвешивания в движении железнодорожных вагонов и поездов «ВВТ-СД-150» (далее - весы) предназначены для измерений массы железнодорожных транспортных средств и определения массы грузов, перевозимых железнодорожным транспортом, в режиме статического взвешивания и/или взвешивания в движении, в том числе для:

- повагонного статического взвешивания с расцепкой порожних и груженых вагонов широкой и узкой колеи с сухими сыпучими, твердыми, а также жидкими грузами любой вязкости;
- повагонного или потележечного взвешивания в движении порожних и груженых вагонов широкой и узкой колеи в составе без расцепки и составов в целом с сухими сыпучими, твердыми, а также жидкими грузами с кинематической вязкостью не менее 59 мм2/с
 - повагонного взвешивания в движении цистерн с жидкими грузами любой вязкости.

Описание средства измерений

Принцип действия весов основан на преобразовании действующей на весы силы, создаваемой взвешиваемым объектом, в деформацию упругих элементов весоизмерительных датчиков, на которых нанесены тензорезисторы (далее — датчиков). Деформация упругих элементов вызывает изменение электрического сигнала тензорезисторов. Аналоговый электрический сигнал от весоизмерительных датчиков передается в прибор весоизмерительный ПВ с последующей обработкой в цифровой вид и выводом информации на монитор компьютера программно-технического комплекса (далее — ПТК) и на печатающее устройство для регистрации.

При статическом взвешивании все оси взвешиваемого вагона должны располагаться на ГПУ весов.

Конструктивно весы состоят из грузоприемного устройства (далее - ГПУ), имеющего три секции (весовые платформы), каждая из которых опирается на четыре датчика, устанавливаемых на бетонный фундамент, прибора весоизмерительного ПВ, ПТК, и внешних электронных устройств. В состав весоизмерительного устройства входят грузоприемное устройство.

В весах используются датчики весоизмерительные балочные из нержавеющей стали, модификация SB2 (Госреестр № 46027-10).

Для обработки сигналов от датчиков в цифровой вид используются приборы весоизмерительные ПВ, изготовленные ООО «Инженерный центр «АСИ», г. Кемерово.

- В весах предусмотрена защита от несанкционированного изменения установленных регулировок следующими средствами:
- на приборах ПВ предусмотрена пломба, разрушаемая при открытии крышки прибора (Рисунок 3);
- системный блок ПТК сзади опечатан пломбой разрушаемой при открытии корпуса ПТК.

Рисунок 1 — Общий вид ГПУ весов

Рисунок 2 — Приборы ПВ

Рисунок 3 — Варианты схемы пломбировки ПВ

Рисунок 4 — Маркировка весов на грузоприемном устройстве и ПТК

Маркировка весов производится на разрушаемой при удалении фирменной наклейке, закрепленной на грузоприемном устройстве с боковой стороны и на корпусе ПТК (Рисунок 4).

На фирменную наклейку наносится следующая маркировка:

- полное наименование изготовителя;
- обозначение весов;
- класс точности по ГОСТ OIML R 76-1-2011;
- класс точности по ГОСТ 30414-96;
- максимальная нагрузка (Мах);
- наибольший предел взвешивания (НПВ);
- минимальная нагрузка (Min);
- наименьший предел взвешивания (НмПВ);
- поверочный интервал (е);
- диапазон температур;
- номер версии программного обеспечения;
- серийный номер весов;
- знак утверждения типа;
- год производства весов;
- надпись «Сделано в России».

Программное обеспечение

В весах используется автономное программное обеспечение APM «Весы вагонные» (далее - ΠO). ΠO выполняет функции по сбору, обработке, хранению, передаче и предоставлению измерительной информации.

ПО весов позволяет реализовывать:

- взвешивание в автоматическом (без участия оператора) и ручном режиме:
- исключение возможности несанкционированной корректировки результатов взвешивания;
- вычисление значения перегруза или недогруза вагона относительно массы, указанной в перевозочных документах или трафаретного значения его грузоподъемности, вводимого оператором;
 - распознавание вагонов по количеству осей;
 - определение направления и расчёт скорости движения каждого вагона;
- определение положения локомотива и исключение его массы из результатов взвешивания;

- привязку результатов взвешивания к дате и времени и их хранение в защищенной локальной базе данных;
- формирование и печать протоколов с результатами взвешивания по различным параметрам запроса;
- диагностику электронного оборудования весов с оперативным информированием о неисправностях.

Дополнительно может производиться:

- расчёт и отображение проекции центра масс взвешиваемого вагона;
- вычисление разности нагрузок на борта и тележки вагона.

Предусмотрены следующие виды механической и программной защиты ПО:

- от непреднамеренных изменений
- а) корпус приборов весоизмерительных ПВ пломбируются. Программное обеспечение не может быть модифицировано или загружено через какой-либо интерфейс или с помощью других средств после поверки без нарушения пломбы (Рисунок 3).
- б) коммутационные порты ПТК блокируются ключом защиты, доступ пользователей к ПО осуществляется только по логину и паролю;
 - от преднамеренных изменений
- а) на уровне ПТК невозможностью запуска системы без ключа защиты, правильного логина и пароля.

Идентификационные данные ПО весов приведены в таблице 1

Таблица 1 — Идентификационные данные ПО

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	APM «Весы вагонные» WinVesy.exe (DynamicWeightLib.dll)
Номер версии (идентификационный номер) ПО	не ниже 1.0.0.1
Цифровой идентификатор ПО	A28C19E4
Другие идентификационные данные (если имеются)	CRC32

Уровень защиты ПО и измерительной информации — «Высокий» по Р 50.2.077-2014.

Метрологические и технические характеристики

Основ	вные	метрологические	И	технические	характеристики,	включая	показатели
точности:							

Статическое взвешивание:

Класс точности по ГОСТ OIML R 76-1-2011 III (средний)

Максимальная нагрузка Мах, минимальная нагрузка Міп, действительная цена деления (шкалы) d, поверочный интервал e, количество поверочных интервалов n, и пределы допускаемой погрешности указаны в таблице 2.

Таблина 2

1 00001111240 2						
			d=e, кг		Пределы	n
				Поддиапазоны	допускаемой	
Обозначение	Max,	Min,		взвешивания*, т	погрешности	
	T	Т		bsbeminatini, i	при	
					поверке, кг	
				от Міп до 25 вкл.	± 25	
ВВД-СД-150	150	1	50	от 25 до 100 вкл.	± 50	3000
				от. 100 до 150 вкл.	± 75	

Пределы допускаемой погрешности в эксплуатации равны удвоенному значению пределов допускаемых погрешностей при поверке

Диапазон выборки массы тары от 0 до 25% Мах

Взвешивание в движении:

Наибольший предел взвешивания (НПВ), т	0
Наименьший предел взвешивания (НмПВ), т	
Дискретность (d), кг	

Класс точности по ГОСТ 30414-96 и пределы допускаемой погрешности весов при взвешивании в движении вагона в составе без расцепки при первичной поверке, приведены в таблице 3.

Таблица 3

Класс	Пределы допускаемой погрешности в диапазоне:				
точности	от НмПВ до 35% НПВ включ.,	св. 35% НПВ,			
	% от 35% НПВ	% от измеряемой массы			
0,5	± 0,25	± 0,25			

Примечание - Значения пределов допускаемой погрешности весов для конкретного значения массы округляют до ближайшего большего значения, кратного дискретности весов.

Пределы допускаемой погрешности в эксплуатации соответствуют удвоенным значениям, приведённым в таблице 3.

При взвешивании вагона в составе без расцепки при первичной поверке не более чем 10 % полученных значений погрешности весов могут превышать пределы, приведенные в таблице 3, но не должны превышать пределы допускаемой погрешности в эксплуатации. При взвешивании вагонов в составе без расцепки общей массой свыше 1000 т абсолютные значения пределов допускаемой погрешности при первичной поверке и в эксплуатации увеличивают на 200 кг на каждую дополнительную 1000 т общей массы состава.

Класс точности по ГОСТ 30414-96 и пределы допускаемой погрешности весов, при взвешивании в движении состава из вагонов в целом при первичной поверке приведены в таблице 4.

Таблипа 4

Класс	Пределы допускаемой погрешности в диапазоне:			
точности	от НмПВ х п до 35% НПВ х п включ.,	св. 35% НПВ х п,		
	% от 35% НПВ х п	% от измеряемой массы		
0,5	± 0,25	± 0,25		
Примечание - г	 и – число вагонов в составе (но не менее 3 	3). При фактическом числе ваго-		

нов в составе, превышающем 10, значение п принимают равным 10.

Пределы допускаемой погрешности в эксплуатации соответствуют удвоенным значениям, приведённым в таблице 4.

Скорость движения состава при взвешивании, км/чот 1 д	ιο 10
Транзитная скорость проезда без взвешивания, км/чдо 1	5
Направление движения при взвешивании двустороннее	
Параметры электрического питания весов от сети переменного тока:	
- напряжение, В)± 22
- частота, Гц	± 1
Диапазон рабочих температур, °С:	
- для ГПУ от минус 30 до пл и	oc 40
- для прибора весоизмерительного ПВот минус 50 до плк	oc 50
- для прочей аппаратуры от плюс 10 до плюс	e 40
Габаритные размеры ГПУ весов, мм, не более	000

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации и на таблички, закрепленные на ГПУ и на панели ПТК фотохимическим способом.

Комплектность средства измерений

В комплект поставки входят:

- 1. Весы вагонные «ВВТ-СД-150» 1 шт.
- 2. Руководство по эксплуатации- 1 экз.
- 3. Паспорт- 1 экз.
- 4. Формуляр- 1 экз.
- 5 Документ «АРМ. Весы вагонные. Руководство оператора» 1 экз
- 6. «АРМ. Весы вагонные. Руководство администратора» 1 экз

Поверка

весов осуществляется:

- при взвешивании в движении в соответствии с ГОСТ Р 8.598–2003 «Весы для взвешивания железнодорожных транспортных средств в движении. Методика поверки»;
- при статическом взвешивании в соответствии с ГОСТ OIML R 76-1–2011 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания» Приложение ДА «Методика поверки весов».

Основные средства поверки:

- гири, соответствующие классу точности M_1 , M_{1-2} по ГОСТ OIML R 111-1 – 2009; контрольные весы и испытательный состав, соответствующие требованиям, изложенным ГОСТ Р 8.598-2003.

Сведения о методиках (методах) измерений

приведены в документе ВВТ-СД-150-00.00.000 РЭ «Весы вагонные для статического взвешивания и взвешивания в движении железнодорожных вагонов и поездов «ВВТ-СД-150». Руководство по эксплуатации» раздел 10 «Порядок работы».

Нормативные и технические документы, устанавливающие требования к весам вагонным для статического взвешивания и взвешивания в движении железнодорожных вагонов и поездов «ВВТ-СД-150»

ГОСТ OIML R 76-1-2011 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания.

ГОСТ 8.021-2005 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений массы.

ГОСТ 30414-96. Весы для взвешивания транспортных средств в движении. Общие технические требования.

ГОСТ 8.021-2005. Весы для взвешивания железнодорожных транспортных средств в движении. Методика поверки.

ТУ 4274-001-74871749-2014 Весы вагонные для статического взвешивания и взвешивания в движении железнодорожных вагонов и поездов «ВВТ-СД-150». Технические условия»

Изготовитель

Общество с ограниченной ответственностью «ТЕНСИБ» (ООО «ТЕНСИБ»), г. Красноярск Адрес: 660049, г. Красноярск, ул. Сурикова, д.6, кв. 79., Телефон/факс: (391) 240-96-17, 242-37-85, 227-58-75, E-mail: alex-sib@mail.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, 46 Тел./факс: (495) 437-55-77/ 437-56-66. e-mail: office@vniims.ru, www.vniims.ru.

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в целях утверждения типа №30004-13 от 26.07.2013 г.

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в красноярском крае» (ФБУ «Красноярский «ЦСМ») 660093, г. Красноярск, ул. Вавилова, 1а, тел. (391) 236-30-80, факс (391) 236-12-94,

E-mail: csm@krascsm.ru, сайт: www.krascsm.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

С.С. Голубев М.п. «___»_____2015 г.